此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Cooperative output tracking of multi-agent systems under finite time

MA Yang-qin1, WEI Wen-jun1,2, AN Xin-lei3

 

(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China;3. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China)

 

Abstract: The cooperative output tracking problem of multi-agent systems in finite time is considered. In order to enable the agents to quickly track and converge to external system within a finite time, a novel distributed output feedback control strategy based on the finite-time state observer is designed. This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal, but also make the systems have a faster convergence and a good robustness. The stability of the system in finite time is proved based on Lyapunov function. Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.

 

Key words: multi-agent systems; finite time observer; cooperative output tracking; distributed output feedback control

 

CLD number: TP273                  Document code: A

 

Article ID: 1674-8042(2019)02-0134-09                 doi: 10.3969/j.issn.1674-8042.2019.02.005

 

References

 

[1]Wieland P, Sepulchre R, Allgwer F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47(5):  1068-1074.
[2]Huang C, Ye X. Cooperative output regulation of heterogeneous multi-agent systems:  an criterion. IEEE Transactions on Automatic Control, 2014, 59(1):  267-273.
[3]Tang Y T. Robust consensus tracking of heterogeneous multi-agent systems under switching topologies. Journal of Systems Science and Complexity, 2016, 29(5):  1-12.
[4]Lu M B, Liu L. Cooperative output regulation of linear multi-agent systems by a novel distributed dynamic compensator. IEEE Transactions on Automatic Control, 2017, 62(12):  6481-6488.
[5]Maza I, Kondak K, Bernard M, et al. Multi-UAV cooperation and control for load transportation and deployment. Journal of Intelligent and Robotic Systems, 2010, 57(1-4):  417-449.
[6]Luo X Y, Yang F, Li S B, et al. Generation of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2014, 40(7):  1311-1319.
[7]Xia Y Q, Na X T, Sun Z Q. Formation control and collision avoidance for multi-agent systems based on position estimation. ISA Transactions, 2016, 6:  287-296.
[8]Huang J. Nonlinear output regulation:  theory and applications. Philadelphia:  SIAM, 2004:  6-8.
[9]Wang X, Hong Y, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, 2010, 55(12):  2891-2895.
[10]Xiang J, Wei W, Li Y J. Synchronized output regulation of linear networked systems. IEEE Transactions on Automatic Control, 2009, 54(6):  1336-1341.
[11]Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(4):  1062-1066.
[12]Dong Y, Huang J. A leader-following rendezvous problem of double integrator multi-agent systems. Automatica, 2013, 49(5):  1386-1391.
[13]Li Z, Chen M Z, Ding Z. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 2016, 68:  179-183.
[14]Tang Y T, Hong Y G, Wang X H. Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders. Automatica, 2015, 62:  154-160.
[15]Li X L, Luo X Y, Li S B, et al. Output consensus for heterogeneous nonlinear multi-agent systems based on T-S fuzzy model. Journal of Systems Science and Complexity, 2017, 30:  1042-1060.
[16]Cai H, Huang J, Lewis F L, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75:  299-305.
[17]Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3):  751-766. [18]Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5):  655-661.
[19]Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55(4):  950-955.
[20]Zheng Y S, Chen W S, Wang L. Finite-time consensus for stochastic multi-agent systems. International Journal of Control, 2011, 84(10):  1644-1652.
[21]Du H B, He Y, Cheng Y, et al. Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Transactions on Circuits and Systems, 2014, 61(6):  1778-1788.
[22]Tian B L, Lu H C, Zuo Z Y, et al. Fixed-time leader-follower output feedback consensus for second-order multi-agent systems. IEEE Transactions on Cybernetics, 2018, 99:  1-6.
[23]Li G P, Wang X Y, Li S H. Finite-time output consensus of higher-order multi-agent systems with mismatched disturbances and unknown state elements. IEEE Transactions on Systems, Man, and Cybernetics:  Systems, 2017, 99:  1-11.

 

多智能体系统在有限时间内的协同输出跟踪

 

马羊琴1, 魏文军1,2, 安新磊3

 

(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070;2. 兰州交通大学 甘肃省轨道交通电气自动化工程实验室, 甘肃 兰州 730070;3. 兰州交通大学 数理学院, 甘肃 兰州 730070)

 

摘要: 研究了有限时间内多智能体系统的输出追踪问题。 为了使智能体能够在有限时间内快速跟踪并收敛到外部系统, 设计了一种基于有限时间状态观测器的新型分布式输出反馈控制策略。 该分布式有限时间观测器不仅可以在智能体无法获得外部系统信号的情况下解决协同输出跟踪问题, 而且可以使系统获得较快的收敛性和良好的鲁棒性。 最后, 基于Lyapunov函数证明了该系统在有限时间内的稳定性且提供了数值仿真实验, 证明了该算法和协议的有效性。
 
关键词: 多智能体系统; 有限时间观测器; 协同输出追踪; 分布式输出反馈控制

 

引用格式:MA Yang-qin, WEI Wen-jun, AN Xin-lei.  Cooperative output tracking of multi-agent systems under finite time. Journal of Measurement Science and Instrumentation, 2019, 10(2): 134-142. [doi: 10.3969/j.issn.1674-8042.2019.02.005]

 

[full text view]