此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

FCS-MPC for four-switch three-phase AC-DC converters with DC-link capacitor voltage balancing

MA Wei-jie1, ZHANG Bao-ge1,2,3

 

(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China;3. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China)

 

Abstract: Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current (FSTP AC-DC) converter, it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction. In order to solve these problems, a finite control set model predictive control (FCS-MPC) for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed. In this strategy, in order to facilitate calculation, the αβ coordinate system model is established and all voltage vectors are evaluated by establishing a cost function. During the whole process, phase locked loop (PLL) and complex modulation strategy are not required. In the new established cost function, the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability. The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.

 

Key words: finite control set model predictive control (FCS-MPC); four-switch three-phase alternating current-direct current (FSTP AC-DC) converters; cost function; capacitor voltage balancing

 

CLD number: TM461             Document code: A

 

Article ID: 1674-8042(2019)02-0150-07           doi: 10.3969/j.issn.1674-8042.2019.02.007

 

References

 

[1]Zhang Y, Yang H. Two-vector-based model predictive torque control without weighting factors for induction motor drives. IEEE Transactions on Power Electronics, 2016, 31(2):  1381-1390.
[2]Zhang J Z, Sun T, Wang F, et al. A computationally efficient quasi-centralized DMPC for back-to-back converter PMSG wind turbine systems without DC-Link tracking errors. IEEE Transactions on Industrial Electronics, 2016, 63(10):  6160-6171.
[3]Hu J, Zhu J, Dorrell D G. Model predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction. IEEE Transactions on Industry Applications, 2013, 51(1):  587-594.
[4]Merabet A, Labib L, Ghias A M Y M. Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Transactions on Smart Grid, 2018, 9(6):  5699-5709.
[5]Klima J, Skramlik J, Valouch V. An analytical modelling of three-phase four-switch PWM rectifier under unbalanced supply conditions. IEEE Transactions on Circuits and Systems II:  Express Briefs, 2007, 54(12):  1155-1159.
[6]Lee T S, Liu J H. Modeling and control of a three-phase four-switch PWM voltage-source rectifier in d-q synchronous frame. IEEE Transactions on Power Electronics, 2011, 26(9):  2476-2489.
[7]Freire N M A, Cardoso A J M. A fault-tolerant direct controlled PMSG drive for wind energy conversion systems. IEEE Transactions on Industrial Electronics, 2013, 61(2):  821-834.
[8]Zhou D, Zhao J, Liu Y. Finite-control-set model predictive control scheme of three-phase four-leg back-to-back converter-fed induction motor drive. IET Electric Power Applications, 2017, 11(5):  761-767.
[9]Liu Y C, Ge X, Tang Q, et al. Model predictive current control for four-switch three-phase rectifiers in balanced grids. Electronics Letters, 2016, 53(1):  44-46.
[10]Peng F Z, Lai J S. Generalized instantaneous reactive power theory for three-phase power systems. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1):  293-297.
[11]Freire N M A, Cardoso A J M. A fault-tolerant PMSG drive for wind turbine applications with minimal increase of the hardware requirements. IEEE Transactions on Industry Applications, 2014, 50(3):  2039-2049.
[12]Cortes P, Kouro S, La Rocca B, et al. Guidelines for weighting factors design in model predictive control of power converters and drives. In:  Proceedings of International Conference on Industrial Technology, IEEE, 2009:  1-7.
[13]Cortes P, Rodriguez J, Antoniewicz P, et al. Direct power control of an AFE using predictive control. IEEE Transactions on Power Electronics, 2008, 23(5):  2516-2523.


基于三相四开关AC-DC变换器直流侧电容电压平衡的FCS-MPC策略

 

马伟杰1, 张宝歌1,2,3

 

(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 光电技术与智能控制教育部重点实验室(兰州交通大学), 甘肃 兰州 730070;3. 甘肃省轨道交通电气自动化工程实验室, 甘肃 兰州 730070)

 

摘要: 三相四开关AC-DC变换器由于开关数量的减少, 容易导致直流侧电容电压不平衡, 系统的稳定性降低等。 为了解决这些问题, 提出了三相四开关AC-DC变换器直流侧电容电压平衡的有限控制集模型预测控制(Finite-control-set model predictive control, FCS-MPC)。 在该策略中, 为了方便计算, 建立了坐标系下的系统模型, 再通过建立代价函数对所有电压矢量进行评估, 整个过程不需要锁相环, 也不需要复杂的调制策略。 在建立的新的代价函数中, 加入了抑制电容电压波动的目标项, 消除了电容中性点电压的偏移, 提高了系统的可靠性。 仿真结果表明, 所提策略能使电容电压保持平衡, 且具有良好的动、 静态性能。

 

关键词: 有限控制集模型预测控制; 三相四开关AC-DC变换器; 目标函数; 电容电压平衡

 

引用格式:MA Wei-jie, ZHANG Bao-ge. FCS-MPC for four-switch three-phase AC-DC converters with DC-link capacitor voltage balancing. Journal of Measurement Science and Instrumentation, 2019, 10(2): 150-156. [doi: 10.3969/j.issn.1674-8042.2019.02.007]

 

[full text view]