WANG Wei-shu, MENG Li-fan, ZHANG Zhi-dong
(Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China))
Abstract: The attitude adjustment of rope system faces the challenging due to the difficulty in obtaining accurate three-dimensional (3D) mathematical model and solving by traditional methods. A set of adjustment systems is designed and used to investigate the automatic control for level or preset attitude adjustment of unknown weights and eccentric loads. The system principle and characteristics are analyzed. The 3D model is decomposed into two two-dimensional (2D) subsystems, and an adaptive fuzzy controller based on BP neural network and least squares (LSE) is designed. The simulation experiment uses MATLAB to train the level-adjustment data for testing algorithm, and a small load is used to verify the effectiveness of the system. The experimental results show that precise attitude adjustment can be achieved within the system load range, and the response speed is fast. This adjustment method provides a fast and effective method for precise adjustment of the load attitude.
Key words: attitude adjustment; rope system modelling; adaptive fuzzy controller; BP neural network
CLD number: TP273.2 Document code: A
Article ID: 1674-8042(2019)02-0168-08 doi: 10.3969/j.issn.1674-8042.2019.02.009
References
[1]Li J Z, Rui Q H, Wang M Y, et al. A Study of flexible force control method on robotic assembly for spacecraft. Applied Mechanics and Materials, 2014, 681: 79-85.
[2]Zheng S Y, Yi G, He W X, et al. Spacecraft vertical passive separation test equipment. China patent: 103600856A, 2014-02-26.
[3]Yi W M, Duan B, Gao F, et al. Horizontal docking technology in large cabin assembly. Computer Integrated Manufacturing Systems, 2015, 21(9): 2354-2360.
[4]Etemadi-Zanganeh K, Angeles J. Real-time direct kinematics of general six-degree-of-freedom parallel manipulators with minimum-sensor data. Journal of Field Robotics, 2010, 12(12): 833-844.
[5]Ming A, Kajitani M, Higuchi T. On the design of wire parallel mechanism. International Journal of the Japan Society for Precision Engineering, 1995, 29(4): 337-342.
[6]Endo G, Yamada H, Yajima A, et al. A weight compensation mechanism with a non-circular pulley and a spring: application to a parallel four-bar linkage arm. Jcmsi Sice Journal of Control Measurement & System Integration, 2010, 3(3): 130-136.
[7]Vaida C, Pisla D, Szilaghyi A, et al. The control system of a parallel robot for brachytherapy new trends in mechanism and machine science. New York: Springer International Publishing, 2015: 1-6.
[8]Liu Y H, Wang X G. A new type of large overload flight simulator motion simulation analysis. Science and Technology and Engineering, 2017, (4): 82-86.
[9]Shariff N, Alluri K, Saba S. Failure rates of single-versus dual-coil nonrecalled sprint quattro defibrillator leads. American Journal of Cardiology, 2015, 115(2): 202-205.
[10]Oh S R, Agrawal S K. Cable suspended planar robots with redundant cables: controllers with positive tensions. IEEE Transactions on Robotics, 2005, 21(3): 457-465.
[11]Hu Z, Yong H, Hu J, et al. Research on failure mechanism of wire ropes in parallel grooved multi-layer winding. China Mechanical Engineering, 2013, 24(23): 3195-3199.
[12]Teaby G W, Teaby J E. Load-lifting and orienting apparatus. US patent: 5240298, 1993-08-31.
[13]Wu Y H. Automatic balance reversal sling group. China patent: 2460505, 2001-11-21.
基于自适应模糊的绳索姿态调节系统设计
王威舒, 孟立凡, 张志东
(中北大学 电子测试技术重点实验室, 山西 太原 030051)
摘要: 绳索系统载荷姿态调节常受限于获取准确三维模型数学关系及常规控制方法求解。 设计了一套自动控制绳索调节系统, 主要用于未知重量及偏心载荷的水平调节和预置姿态调节。 介绍了模型结构和工作原理, 三维模型被分解为两个独立的二维子系统, 并设计了一种基于BP神经网络和最小二乘的自适应模糊控制器。 采用MATLAB利用水平调节数据对算法有效性进行训练仿真, 另外使用小负载来验证系统有效性。 实验结果表明, 在系统负载范围内可以实现精确的姿态调节, 响应速度快。 该调节方法为负载姿态精确自动的调节提供了一种快速有效的方法。
关键词: 姿态调节; 绳索系统建模; 自适应模糊控制; BP神经网络
引用格式:WANG Wei-shu, MENG Li-fan, ZHANG Zhi-dong. Adaptive fuzzy design of a rope attitude adjustment system. Journal of Measurement Science and Instrumentation, 2019, 10(2): 168-175. [doi: 10.3969/j.issn.1674-8042.2019.02.009]
[full text view]