此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Nonequidistant two-dimensional antenna arrays based on Latin squares

V F Kravchenko1, V I Lutsenko2, I V Popov2, LUO Yi-yang3


(1. Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Moscow 125009, Russia;2. Usikov Institute of Radiophysics and Electronics of National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine;3. V.N.Karazin Kharkiv National University, Kharkiv 61022, Ukraine)

 

Abstract: Non-equidistant sparse antenna arrays constructed on the basis of Latin squares are considered. A method for their construction and a synthesis algorithm are proposed, and the properties of two-dimensional antennas based on them, which ensure, at a high degree of rarefaction, a sufficiently small lateral radiation are studied. The features and main characteristics of such antennas are studied.
Key words: non-equidistant antenna array; Latin square; compound squares; covered frequencies

CLD number: TN201.1+5           Document code: A
Article ID: 1674-8042(2019)01-0038-011    doi: 10.3969/j.issn.1674-8042.2019.01.006

References
[1] Lutsenko V I, Lutsenko I V, Popov I V, et al. Using the properties of magic squares for aperture synthesis. In: Proceedings of the 8th International Conference on Acousto-optical and Radar Measurement and Information Processing Methods, Suzdal, Russia, 2015: 215-219.
[2] Lutsenko V I, Popov I V, Lutsenko I V, et al. Nonequidistant two-dimensional antenna arrays are based on magic squares. In: Proceedings of 2016 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkov, Ukraine,  2016.
[3] Kravchenko V F, Lutsenko V I, Lutsenko I V, et al. Non-equidistant two-dimensional antenna arrays based on “magic” squares. Physical Basis of Instrument Making, 2017,  8(3): 244-253.
[4]  Kopilovich L E, Sodin L G.  Linear non-equidistant antenna arrays ∥ Multielement System Design in Astronomy and Radio Science. Astrophysics and Space Science Library,  2001, 268: 77-96.
[5] Kopilovich L E. Non-redundant antenna configurations on a two-dimensional aperture of the interferometer, giving a complete coverage of the central regions in the plane of spatial frequencies. Radiophysics and Radio Astronomy, 2012, 17(2): 1176-1182.
[6] Leeper D C. Thinned aperiodic antenna arrays with improved peak side lobe level control. USA Patent  No. 4071848, 1978-01-31.
[7] Gardner M. Mathematical leisure. Translation by Danilov Y A, M: Mir, 1972: 496.
[8] Denеs J, Кееdwell А D. Latin squares and their applications. Bdpst, 1974: 455.

 

基于拉丁方的非等距二维天线阵列


V F Kravchenko1, V I Lutsenko2, I V Popov2, LUO Yi-yang3


(1. 俄罗斯科学院 无线电工程与电子研究所, 莫斯科 125009;2. 乌克兰科学院 无线电物理与电子研究所, 哈尔科夫 61085;3. 哈尔科夫国立大学, 哈尔科夫 61022)


摘  要:  研究了基于拉丁方的非等距二维天线阵列构造, 提出了构造方法和合成算法, 研究了在较高稀疏度下横向辐射充分小的二维天线的性质、 特征和主要特点。


关键词:  非等距二维天线阵列; 拉丁方; 复合方; 覆盖频率

 

引用格式:  V F Kravchenko, V I Lutsenko, I V Popov, et al. Nonequidistant two-dimensional antenna arrays based on Latin squares. Journal of Measurement Science and Instrumentation, 2019, 10(1): 38-48. [doi: 10.3969/j.issn.1674-8042.2019.01.006]

 

[full text view]