BAI Jiang-hua1, CHEN Jing-wei2
(1. Department of Physics, Portland State University, OR 97201, USA; 2. Software Department, Xiamen Malata Technology Inc., Xiamen 361006, China)
Abstract: A simple, stable and reliable virtual logic analyzer is presented. The logic analyzer had two modules: one was the test pattern generation module, the other was the logic monitoring module. Combining the two modules, one is able to test a digital circuit automatically. The user interface of the logic analyzer was programmed with LabVIEW. Two Arduino UNO boards were used as the hardware targets to input and output the logic signals. The maximum pattern update rate was set to be 20 Hz. The maximum logic sampling rate was set to be 200 Hz. After twelve thousand cycles of exhaustive tests, the logic analyzer had a 100% accuracy. As a tutorial showing how to build virtual instruments with Arduino, the software detail is also explained in this article.
Key words: automatic test equipment (ATE); automatic test pattern generation (ATGP); logic analyzer; LabVIEW; Arduino; virtual instruments
CLD number: TP391.9 Document code: A
Article ID: 1674-8042(2019)01-0055-06 doi: 10.3969/j.issn.1674-8042.2019.01.008
References
[1] Ptorelli. Turn your Arduino into a logic analyzer. [2018-09-28]. http:∥www.instructables.com/id/Arduinolyzerjs-Turn-your-Arduino-into-a-Logic-Anal/
[2] Lewis J. Logic analyzer tutorial and introduction. [2018-09-28]. https:∥www.baldengineer.com/logic-analyzer-tutorial-introduction.html.
[3] Vincenzo G. DIY logic analyzer. [2018-09-28]. https:∥create.arduino.cc/projecthub/vincenzo-g/diy-logic-analyzer-f61ee5.
[4] Marco C. Low cost DIY logic analyzer. [2018-09-28]. https:∥arduinoplusplus.wordpress.com/2017/07/08/low-cost-logic-analyzer/
[5] Hankewycz D. Arduino: 3 powerful, yet overlooked uses. [2018-09-28]. https:∥www.mouser.com/blog/arduino-3-powerful-yet-overlooked-uses.
[6] Bai J H, Chen J W, Freeouf J, et al. A 4-layer method of developing integrated sensor systems with LabVIEW. Journal of Measurement Science and Instrumentation, 2013, 4(4): 307-312.
[7] National Instruments. Types of graphs and charts. [2018-09-28]. http:∥zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/types_of_graphs_and_charts/
[8] Bai J H, Rosa A L. Essentials of building virtual Instruments with LabVIEW and Arduino for Lab automation applications. International Journal of Science and Research, 2017, 6(5): 640-644.
[9] Bai J H, Rosa A L. An SPM stage driven by 3 stepper motors. Journal of Measurement Science and Instrumentation, 2017, 8(3): 271-276.
[10] Bai J H, Rosa A L. An automated AFM designed for nanoindentation and force measurements. Journal of Measurement Science and Instrumentation, 2018, 9(4): 347-353,
一个基于Arduino的虚拟逻辑分析仪
白江华1, 陈静薇2
(1. 美国波特兰州立大学 物理系, 俄勒冈州 97201, 美国; 2. 厦门万利达科技公司软件资源部, 福建 厦门 361006)
摘 要: 本项目设计了一台结构简单、 性能稳定的逻辑分析仪。 该逻辑分析仪由两个模块组成; 一个模块用来生成测试用的数字波形, 另一个模块用来读取、 显示和存储数字波形。 两个模块联合使用, 可以完成电路板的自动化测试。 该逻辑分析仪的主控程序用LabVIEW编写, 输入输出模块用两个Arduino UNO 板实现。 波形生成模块的最高刷新频率设定为20 Hz, 逻辑读取模块的最高采样频率设定为200 Hz。 经过1.2万次循环测试, 该逻辑分析仪的准确率为100%。 本文还对如何用Arduino构建虚拟仪器以及相应的程序进行了解释。
关键词: 自动测试设备; 自动测试向量生成; 逻辑分析仪; LabVIEW; Arduino; 虚拟仪器
引用格式: BAI Jiang-hua, CHEN Jing-wei. A virtual logic analyzer implemented with Arduino. Journal of Measurement Science and Instrumentation, 2019, 10(1): 55-60. [doi: 10.3969/j.issn.1674-8042.2019.01.008]
[full text view]