HAN Yan-bo, GAO Li, YAN Wen-hua
(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint, the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results, average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks, the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
Key words: cognitive relay network; amplify-and-forward relay; outage probability; α-μ fading channels
CLD number: TN925 Document code: A
Article ID: 1674-8042(2019)01-0069-07 doi: 10.3969/j.issn.1674-8042.2019.01.010
References
[1] Lee J, Wang H, Andrews J G, et al. Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 2011, 10(2): 390-395.
[2] Zhong C, Ratnarajah T, Wong K K. Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. 2011, 60(6): 2875-2879.
[3] Xu W, Zhang J, Zhang P, et al. Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference. IEEE Communications Letters, 2012, 16(8): 1252-1255.
[4] Arzykulov S, Nauryzbayev G, Tsiftsis T A. Underlay cognitive relaying system over α-μ fading channels. IEEE Communications Letters, 2017, 21(1): 216-219.
[5] Duong T Q, Bao V N Q, Zepernick H J. Exact outage probability of cognitive AF relaying with underlay spectrum sharing. Electronics Letters, 2011, 47(17): 1001.
[6] Duong T Q, Costa D B D, Elkashlan M, et al. Cognitive amplify-and-forward relay networks over nakagami-m fading. IEEE Transactions on Vehicular Technology, 2012, 61(5): 2368-2374.
[7] Swarma P K, Solanki S, Upadhyay P K, et al. Outage analysis of cognitive opportunistic relay networks with direct link in nakagami- m fading. IEEE Communications Letters, 2015, 19(5): 875-878.
[8] Yang J, Chen L, Lei X, et al. Dual-hop cognitive amplify-and-forward relaying networks over η-μ fading channels, 2016, 65(8): 6290-6300.
[9] Hashemi H. The indoor radio propagation channel. In: Proceedings of the IEEE, 1993, 81(7): 943-968.
[10] Stein S. Fading channel issues in system engineering. IEEE Journal on Selected Areas in Communications, 1987, 5(2): 68-89.
[11] Gradshteyn I S, Ryzhik I M. Table of integrals, series and products. Mathematics of Computation, 2007, 20(96): 1157-1160.
[12] Suraweera H A, Louie R H Y, Li Y, et al. Two hop amplify-and-forward transmission in mixed rayleigh and rician fading channels. IEEE Communications Letters, 2009, 13(4): 227-229.
[13] Proakis J G. Digital communications. New York: McGraw-Hill, 2000.
认知两跳AF中继网络在α-μ衰落信道下的性能分析
韩彦博, 高 丽, 闫文华
(兰州交通大学 电子与信息工程学院 , 甘肃 兰州 730070)
摘 要: 基于独立非同分布α-μ衰落信道研究认知两跳放大转发(amplify-and forward, AF)中继网络的性能, 分别在两种认知用户发射功率控制策略下分析二级用户网络性能。 首先, 综合考虑了主用户网络最大可容忍干扰功率和认知网络最大允许发射功率, 分别给出了中断概率下界的封闭表达和渐近表达。 利用以上结果, 得出高信噪比下的平均误码率。 为了进一步分析认知两跳AF中继网络的性能, 在只考虑主用户网络最大可容忍干扰功率条件下, 给出了中断概率下界闭式表达和渐近表达。 最后, 通过数值仿真及蒙特卡洛仿真验证了理论分析的准确性。 结果表明, 当主用户网络最大可容忍干扰功率或认知网络最大允许发射功率变大, 二级用户网络的中断概率和误码率均降低。
关键词: 认知中继网络; 放大转发中继; 中断概率; α-μ衰落信道
引用格式: HAN Yan-bo, GAO Li, YAN Wen-hua. Cognitive amplify-and-forward dual-hop relay networks over α-μ fading channels. Journal of Measurement Science and Instrumentation, 2019, 10(1): 69-75. [doi: 10.3969/j.issn.1674-8042.2019.01.010]
[full text view]