此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Mircostructural and electrical properties of Ce0.8Sm0.2O2-δ-BaZr0.9Y0.1O3-δ composite electrolyte


CHEN You, LIU Yue-xin, LI Sha, WANG Yan-zhong


(College of Material Science and Engineering, North University of China, Taiyuan 030051, China)


Abstract: The (1-x)BaZr0.9Y0.1O3-δ (BZY)-xCe0.8Sm0.2O2-δ (SDC,  x=0.1, 0.3, 0.5 and 0.7) composite electrolytes were prepared by combining a gel polymerization method with a ball milling. X-ray diffraction (XRD) patterns show the mixture of BZY and SDC is only crystalline phase as the composite electrolyte. The relative density, grain size and total conductivity of composite electrolytes  increase significantly with the increase of SDC content. The maximum conductivity of 0.1 BZY-0.9 SDC reaches 2×102 S·cm-1 at 600 ℃ in wet air, which is close to the conductivity of SDC.


Key words: solid electrolyte; proton conductor; solid oxide fuel cells; electrical conduction

 

CLD number: TQ132.3+5           Document code: A


Article ID: 1674-8042(2019)01-0091-06    doi: 10.3969/j.issn.1674-8042.2019.01.013

 

References


[1] Morales M, Navarro M E, Segarra M, et al. Processing of graded anode-supported micro-tubular SOFCs based on samaria-doped ceria via gel-casting and spray-coating. Ceramics International, 2012, 38(5): 3713-3722.
[2] Zhan Z, Wen T L, Tu H G, et al. AC impedance investigation of samarium-Doped ceria. Journal of Electrochemistry Society, 2001, 148(5): A427-A432.
[3] Lu C, Worrell W L, Gorte R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. Journal of The Electrochemical Society, 2003, 150(3): A354-A358.
[4] Huang K Q, Feng M, Goodenough J B, et al. Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. Journal of the Amerian Ceramic Society, 1998, 81(2): 357-362.
[5] Wang S R, Kobayashi T, Dokiya M, et al. Electrical and ionic conductivity of Gd-doped ceria. Journal of . Electrochemical Society, 2000, 147(10): 3606-3609.
[6] Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical Reviews, 2004, 104(10): 4637-4678.
[7] Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 1981, (3/4): 359-363.
[8] Iguchi F, Nagao Y, Sata N, et al. Proton concentration in 15 mol% Y-doped BaZrO3 proton conductors prepared at various temperatures. Solid State Ionics, 2011, 192(1): 97-100.
[9] Iguchi F, Sata N, Tsurui T, et al. Microstructures and grain boundary conductivity of BaZr1-xYxO3 (x=0.05, 0.10, 0.15) ceramics. Solid State Ionics, 2007, 178(7): 691-695.
[10] Matsumoto H, Nomura I, Okada S, et al. Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics, 2008, 179(27): 1486-1489.
[11] Ryu K H, Haile S M , et al. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics, 1999, 125(1): 355-367.
[12] Ahmed I, Eriksson S G, Ahlberg E, et al. Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics, 2007, 178(7): 515-520.
[13] Sun Z Q, Fabbri E, Bi L, et al. Lowering grain boundary resistance of BaZr0.8Y0.2O3-δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics Pccp , 2010, 13(17): 7692-7700.
[14] Carvalho R G, Fernandes A J S, Silva R F, et al. Directional solidification of ZrO2-BaZrO3 composites with mixed protonic-oxide ionic conductivity. Solid State Ionics, 2014, 262: 654-658.
[15] Zhu B, Liu X R, Schober T, et al. Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications. Electrochemistry Communications, 2004, 6(4): 378-383.
[16] Khandelwal M, Venkatasubramanian A, Prasanna T R S, et al. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate. Journal of the European Ceramic Society, 2011, 31(4): 559-568.
[17] Venkatasubramanian A, Gopalan P, Prasanna T R S, et al. Synthesis and characterization of electrolytes based on BaO-CeO2-GdO1.5 system for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35(10): 4597-4605.
[18] Sun W, Jiang Y, Wang Y, et al. A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells. Journal of Power Sources, 2011, 196(1): 62-68.
[19] Medvedev D, Maragou V, Pikalova E, et al. Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources, 2013, 221: 217-227.
[20] Liu M F, Ding D, Bai Y, et al. An efficient SOFC based on samaria-doped ceria (SDC) electrolyte. Journal of The Electrochemical Society, 2012, 159(6): B661-B665.
[21] Lin D, Wang Q H, Peng K P, et al. Phase formation and properties of composite electrolyte BaCe0.8Y0.2O3-δ-Ce0.8Gd0.2O1.9 for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2012, 205: 100-107.
[22] Huang J B, Zhang L, Wang C, et al. CYO-BZCYO composites with enhanced proton conductivity: candidate electrolytes for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(17): 13044-13052.
[23] Li B, Liu S F, Liu X M, et al. Electrical properties of SDC-BCY composite electrolytes for intermediate temperature solid oxide fuel cell. International Jouranl of Hydrogen Energy, 2014, 39(26): 14376-14380.
[24] Lacz A, Grzesik K, Pasierb P, et al. Electrical properties of BaCeO3-based composite protonic conductors. Journal of Power Sources, 2015, 279: 80-87.
[25] Savaniu C D, CanalesV J, Irvine J T S, Investigation of proton conducting BaZr0.9Y0.1O2.95 ∶BaCe0.9Y0.1O2.95 core:shell structures. Journal of Material. Chemistry, 2005, 15(5): 598-603.
[26] Khani Z, Taillades M L, Taillades G, et al. Preparation of nanoparticle coreshell electrolyte materials for proton ceramic fuel cells. Chemistr of Material, 2010, 22(3): 1119-1125.
[27] Ahmed I, Eriksson S G, Ahlberg E, et al. Influence of microstructure on electrical properties in BaZr0.5In0.5O3-δ proton conductor. Solid State Ionics, 2008, 179(21-26): 1155-1160.
[28] Kim G, Lee N, Chang H, et al. Various synthesis methods of aliovalent-doped ceria and their electrical properties for intermediate temperature solid oxide electrolytes. International Journal of Hydrogen Energy, 2013, 38(3): 1571-1587.

 

Ce0.8Sm0.2O2-δ-BaZr0.9Y0.1O3-δ复合电解质的微观表征与电性能分析


陈  优, 刘月鑫, 李  莎, 王延忠


(中北大学 材料科学与工程学院, 山西 太原 030051)


摘  要:  复合电解质(1-x)BaZr0.9Y0.1O3-δ (简称BZY) -xCe0.8Sm0.2O2-δ (SDC,  x=0.1,0.3,0.5,0.7)是通过凝胶聚合理论和球磨处理共同制备的。 X射线衍射分析显示, BZY与SDC的混合物所形成的复合电解质仅以晶相结构存在。 在这种复合电解质中, 随着SDC的含量增长, 材料的相对密度、晶粒尺寸和总导电性将会显著提升。 10%的BZY和90%的SDC组成的电解质为600 ℃湿润空气中达到最大电导率, 其大小为2×102 S·cm-1, 接近SDC的电导率。


关键词:  固体电解质; 质子导体; 固体氧化物燃料电池; 电传导

 

引用格式:  CHEN You, LIU Yue-xin, LI Sha, et al. Mircostructural and electrical properties of Ce0.8Sm0.2O2-δ-BaZr0.9Y0.1O3-δ composite electrolyte. Journal of Measurement Science and Instrumentation, 2019, 10(1): 91-96. [doi: 10.3969/j.issn.1674-8042.2019.01.013]

 

[full text view]