此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Suppression effect of solid inertants on coal dust explosion


TAN Ying-xin1, CAO Wei-guo1, ZHANG Yun1, CHANG Hao2


1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;2. PLA Unit 63961, Beijing 100012, China)


Abstract: The effect of solid inertants like rock dust on explosion suppression was experimentally tested. By adding solid inertants with different concentrations into three kinds of coal dust, the maximum explosion pressure Pmax and the rate of explosion pressure rise(dp/dt)max were acquired. Based on this, the suppression effect of rock dust on coal dust explosion was analyzed. The experimental and analytical results show that there are two major factors that play an important role in explosion suppression: composition of solid inertant and particle size of solid inertant. The higher the concentration of solid inertant and the smaller the particle size of solid inertant, the better the suppression effect. In addition, the smaller the particle size of coal dust, the larger the amount of rock dust.


Key words: coal dust explosion; explosion pressure; solid inertants; rock dust


 

CLD number: X932         Document code: A


Article ID: 1674-8042(2018)04-0335-04              doi: 10.3969/j.issn.1674-8042.2018.04.005


 

References


1] Yu B F. Technical handbook of prevention of methane damage in mine. Beijing: Coal Industry Press, 2005.

2] You T L, Tan Y X, Xu H. Study on methane-coal dust explosion pressure in a horizontal pipeline. Journal of North University of China(Natural science edition), 2014, 35(4): 449-452.[3] Luo Z M, Deng J, Wen H, et al. Experimental study on flame propagation characteristics of gas explosion in small-scale duct. China Safety Science Journal,  2007, 17(5): 106-109.

4] Tan Y X, Yu C J.Test on methane flame velocity in horizontal tube with obstacle. Journal of Measurement Science and Instrumentation, 2012, 3(4): 320-322.

5] Lin B Q, Chang J H, Zhai C. Analysis on coal mine safety situation in china and its countermeasures. China Safety Science Journal,  2006, 16(5): 42-46.

6] Wang H F, Feng S S. Preventing explosion principle. Beijing: Beijing Institute of Technology Press, 2004.

7] National Coal Mine Safety Administration. Safety production rule of coal mine, 2005-01-01.

8] Wang X F,Tan Y X, Fan Y X. Influence of particle size magnesium-aluminum alloy on minimum ignition temperature. China Powder Science and Technology. 2016, 22(2): 98-101.

9] Amyotte P R, Mintz K J, Peeg M J. Solid inerrant and their use in dust explosion prevention and mitigation. Transactions of IChemE, 1995, 73(B):  89-100.

10] Cashdollar K L. Overview of dust explosibility characteristics. Journal of Loss Prevention in the Process Industries, 2000, 13: 183-199.

11] Feng M M, Tan Y X, Zhang X C, et al. Experimental study on effect of explosion suppression of carbon dioxide at different initial temperatures. Fire Science and Technology, 2015, 34(11): 1423-1425.

12] SI Rong-jun, WANG Chun-qiu. Experimental Research on the Influence of Gas on the Character of Coal Dust Explosion[J], China Safety Science Journal, 2006, 16(12): 86-91.

13] Wang Z C, Zhao J P. Application of heat explosion theory to dust explosion mechanism research. China Safety Science Journal, 2004, 14(5): 80-83.

14] Zhao H Y. Gas and dust explosion principle.Beijing: Beijing Institute of Technology Press, 1996.

15] Wei S J, Tan Y X. Effect of ignition delay time on pulverized coal ignition energy at different concentrations, China Powder Science and Technology, 2016, 22(6): 32-34.



 

固态惰性介质对煤粉尘爆炸的抑制作用


谭迎新1, 曹卫国1, 张  云1, 常  皓2


1. 中北大学 环境与安全工程学院, 山西 太原 030051; 2. 中国人民解放军63961部队, 北京 100012)


  :  实验研究了固态惰性介质(以石灰石为例)对煤粉爆炸的抑制作用。 将不同含量的石灰石加入三种煤粉中, 测得了煤粉爆炸的最大压力及最大压力上升速度。 在此基础上, 分析了固态惰性介质对煤粉爆炸抑制的机理。 实验及分析结果表明, 固态惰性介质成分和粒度是影响固态惰性介质抑爆效果的两大因素。 隋性介质浓度越高、 粒度越小, 抑爆效果越好。 此外, 煤粉粒度越小, 需要的惰性介质量越大。


关键词:  煤粉爆炸; 爆炸压力; 固态惰性介质; 石灰石粉


 

引用格式:   TAN Ying-xin, CAO Wei-guo, ZHANG Yun, et al. Suppression effect of solid inertants on coal dust explosion. Journal of Measurement Science and Instrumentation, 2018, 9(4):  335-338. [doi: 10.3969/j.issn.1674-8042.2018.04.005]


[full text view]