CHEN Li-zhen, ZHAO Chong-yang, ZHANG Le, LIU Yuan-yuan, WANG Jian-long, CAO Duan-lin
(School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China)
Abstract: Nitroguanidine(NQ) is a high-energy and low-sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N-dimethylformamide, 1,4-butyrolactone and dimethyl sulfoxide+water, N, N-dimethylformamide+water were measured by dynamic laser monitoring within a temperature range from 298.15 K to 338.15 K. The experimental data were correlated by modified Apelblat equation, λh equation, CNIBS/R-K model, and Jouyban-Acree model. The results show that the four thermodynamic models can all be used to predict solubility with high accuracy. Accrding to the Akaike’s information criterion (AIC), the better models for correlating the solubility of NQ are judged. Additionally, the dissolution enthalpy, entropy and Gibbs free energy were calculated by the van’t Hoff equation.
Key words: nitroguanidine (NQ); solubility; correlation models; thermodynamic properties
CLD number: TQ560.7Document code: A
Article ID: 1674-8042(2018)03-0226-07doi: 10.3969/j.issn.1674-8042.2018.03.004
References
[1]Sanchez J A, Roemer E L, Stretz L A. Spherical nitroguanidine process. US patent: 4967000, 1990-10-30.
[2]Mcbride W, Henry R A, Cohen J, et al. Solubility of nitroguanidine in water. Journal of the American Chemical Society, 1951, 73(1): 485-486.
[3]Mudryy R S, Damavarapu R, Stepanov V. Crystallization of high bulk density nitroguanidine. US Army Armament Research, Development and Engineering Center, New Jersey, 2011.
[4]Chen C, Yang Y, Jin J P, et al. Study on thermodynamics of crystallization of nitroguanidine. Chemical Industry and Engineering Progress, 2012, 31(S): 486-489.
[5]Alnemrat S, Hooper J P. Predicting solubility of military, homemade, and green explosives in pure and saline water using COSMO-RS. Prepellants, Explosives, Pyrotechnics, 2014, 39(4): 79-89.
[6]Thiel K D, Ettlingen H H. Process for the production of spherulitic particles. US patent: 5696407, 1997-12-09.
[7]Chen L Z, Song L, Gao Y P, et al. Experimental determination of solubilities and supersolubilities of 2,2′,4,4′,6,6′-hexanitrostilbene in different organic solvents. Chinese Journal of Chemical Engineering, 2017, 25(6): 809-814.
[8]Acree W E, Zvaigzne A I. Thermodynamic properties of non-electrolyte solutions: Part 4. Estimation and mathematical representation of solute activity coefficients and solubilities in binary solvents using the NIBS and modified Wilson equations. Thermochimica Acta, 1991, 178(4): 151-167.
[9]Jouyban A. Review of the cosolvency models for preditcing solubylity of drugs in water-cosolvent mixtures. Journal of Pharmacy and Pharmaceutical Sciences, 2008, 11(1): 32-58.
[10]Chen L Z, Zhang T B, Li M, et al. Solubility of 2,2′,4,4′,6,6′-hexanitrostilbene in binary solvent of N,N-dimethylformamide and acetonitrile. The Journal of Chemical Thermodynamics, 2016, 95(4): 99-104.
[11]Williams N A, Amidon G L. Excess free energy approach to the estimation of solubility in mixed solvent systems II: ethanol-water mixtures. Journal of Pharmaceutical Sciences, 1984, 73(1): 14-18.
[12]Sitzmann M E, Foti S C. Solubilities of explosives-dimethylformamide as general solvent for explosives. Journal of Chemical and Engineering Data, 1975, 20(1): 53-55.
[13]Lan G C, Wang J L, Chen L Z, et al. Measurement and correlation of the solubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in different solvents.The Journal of Chemical Thermodynamics, 2015, 89(10): 264-269.
[14]Chen Q L, Wang Y L, Wu X H, et al. Solubility of 11β-Hydroxypregna-1,4,16-triene-3,20-dione in different solvents. Journal of Chemical and Engineering Data, 2008, 53(6): 1414-1416.
[15]Apelblat A, Manzurola E. Solubilities of l-aspartic, dl-aspartic, dl-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T=278 K to T=345 K. The Journal of Chemical Thermodynamics, 1997, 29(12): 1527-1533.
[16]Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-dl-aspartate in water from T=(278 to 348) K. The Journal of Chemical Thermodynamics, 1999, 31(1): 85-91.
[17]Buchowski H, Ksiazczak A, Pietrzyk S. Solvent activity along a saturation line and solubility of hydrogen-bonding solids. The Journal of Physical Chemistry, 1980, 84(9): 975-979.
[18]Wang L. Measurement and correlation of the solubility of 6-chloro-3-aminopyridazine in water and binary mixtures of water+ethanol from 293.55 K to 342.95 K. Journal of Molecular Liquids, 2013, 188(12): 55-60.
[19]Acree W E, Cargar J W, Zvaigzne A I, et al. Mathematical representation of thermodynamic properties carbazole solubilities in binary alkane+dibutyl ether and alkane+tetrahydropyran solvent mixtures. Physics and Chemistry of Liquids, 1991, 23(1): 27-35.
[20]Zhu M H, Zhang H H, Zhang K K, et al. Measurement and correlation of solubility of boscalid with thermodynamic analysis in pure and binary solvents from 288.15 k to 313.15 k. The Journal of Chemical Thermodynamics, 2017, 112(9): 178-187.
[21]Liang A Z, Wang S, Qu Y X. Determination and correlation of solubility of phenylbutazone in monosolvents and binary solvent mixtures. Journal of Chemical and Engineering Data, 2017, 62(2): 864-871.
[22]Pawar R R, Aher C S, Pagar J D, et al. Solubility, density and solution thermodynamics of naI in different pure solvents and binary mixtures. Journal of Chemical and Engineering Data, 2012, 57(12): 3563-3572.
[23]Chen J X, Ge Y Y, Pu Y P, et al. Solubility and thermodynamic behavior of veramoss in different pure solvents and {ethanol+water} mixtures from T=283.15 to 333.15 K. Journal of Chemical and Engineering Data, 2017, 62(1): 292-302.
[24]Xiao L P, Wang Y L, Yang, J X, et al. Determination and correlation of solubility of 4′-bromomethyl-2-cyanobiphenyl in acetone+(ethanol, n-propanol, n-butanol) mixtures. The Journal of Chemical Thermodynamics, 2016, 102(11): 199-210.
[25]Zhi J J, Liu Q, Li T, et al. Measurement and correlation of the solubility for camptothecine in different organic solvents. Journal of Chemical and Engineering Data, 2016, 61(6): 2052-2061.
硝基胍在水和有机溶剂中的固液相平衡数据测定与关联(298.15 K-338.15 K)
陈丽珍, 赵重阳, 张乐, 刘圆圆, 王建龙, 曹端林
(中北大学 化学工程与技术学院, 山西 太原 030051)
摘要:硝基胍(NQ)是一种高能钝感炸药, 固液相平衡数据对于其结晶研究具有重要意义。 采用激光动态法测定了硝基胍在水、 二甲基亚砜(DMSO)、 N, N-二甲基甲酰胺(DMF)、 γ-丁内酯(GBL)、 DMSO/水和DMF/水溶液中298.15 K到338.15 K温度范围内的溶解度, 并用修正的Apelblat方程、 λh方程、 CNIBS/R-K方程及Jouyban-Acree 方程对所测溶解度数据进行了关联。 对所建模型的预测结果与实验数据进行了对比, 结果表明, 上述热力学模型预测NQ溶解度的准确度较高。 此外, 利用 Akaike信息准则 (AIC) 对比了各关联模型的预测效果, 通过范特霍夫方程计算了NQ在上述溶剂中的溶解焓变、 熵变及吉布斯自由能变。
关键词:硝基胍(NQ); 溶解度; 关联模型; 热力学特性
引用格式:CHEN Li-zhen, ZHAO Chong-yang, ZHANG Le, et al. Measurement and correlation of solid-liquid equilibrium data for nitroguanidine in water and organic solvents from 298.15 K to 338.15 K. Journal of Measurement Science and Instrumentation, 2018, 9(3): 226-232. [doi:10.3969/j.issn.1674-8042.2018.03.004]
[full text view]