此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

A method of automatic shape depiction and information extraction for oceanic eddies in SAR images

 

ZHENG Ping1,2,3, CHONG Jin-song1,2, WANG Yu-hang1,2,3


(1. National Key Laboratory of Science and Technology on Microwave Imaging, Beijing 100190, China;2. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;3. University of Chinese Academy of Sciences, Beijing 100049, China)


 

Abstract: Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel-1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.


Key words: SAR image; ocean eddies; shape depiction; information extraction


 

CLD number: TN911.73Document code: A


Article ID: 1674-8042(2018)03-0241-08doi: 10.3969/j.issn.1674-8042.2018.03.006


 

References


1]Munk W, Armi l, Fischer K, et al. Spirals on the sea. In: Proceedings Mathematical Physical & Engineering Sciences, 2000, 456(1997): 1217-1280.

2]Digiacomo P M, Holt B. Satellite observations of small coastal ocean eddies in the Southern California Bight. Journal of Geophysical Research Oceans, 2001, 106(C10): 22521-22543.

3]Ivanov A Y, Ginzburg A I. Oceanic eddies in synthetic aperture radar images. Journal of Earth System Science, 2002, 111(3): 281-295.

4]Lavrova O Y, Bocharova T Y. Satellite SAR observations of atmospheric and oceanic vortex structures in the Black Sea coastal zone. Advances in Space Research, 2006, 38(10): 2162-2168.

5]Yamaguchi S, Kawamura H. SAR-imaged spiral eddies in Mutsu Bay and their dynamic and kinematic models. Journal of Oceanography, 2009, 65(4): 525-539.

6]Karimova S S, Lavrova O Y, Solov’ev D M. Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data. Izvestiya Atmospheric and Oceanic Physics, 2012, 48(9): 1006-1013.

7]Yang M, Chong J S. A method based on logarithmic spiral edge fitting for information extraction of eddy in the SAR image. Journal of Radars, 2013, 2(2): 226-233.

8]Chaudhuri D, Samal A, Agrawal A, et al. A statistical approach for automatic detection of ocean disturbance features from SAR images. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(4): 1231-42.

9]McAndrew A. An introduction to digital image processing with matlab notes for scm2511 image processing. Melbourne: Victoria University of Technology, 2004, 73-75.

10]Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man & Cybernetic , 1979, 9(1): 62-66.

11]Lam L, Lee S W, Suen C Y. Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 14(9): 869-885.

12]Mukherjee A, Parui S K, Chaudhuri D, et al. An efficient algorithm for detection of road-like structures in satellite images; In: Proceedings of IEEE 13th International Conference on Pattern Recognition, 1996: 875-879.

13]Liu A K, Peng C Y, Chang Y S. Wavelet analysis of satellite images for coastal watch. IEEE Journal of Oceanic Engineering, 1997, 22(1): 9-17.

14]Marmorino G O, Smith g B, Miller W D. Infrared remote sensing of surf-zone eddies. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(3): 1710-1718.

15]Zhang M, Li C Y. Numerical simulation of the typhoon eye. Chinese Journal of Atmospheric Sciences, 1986, 10(3): 225-231.

16]Hough P V C. Method and means for recognizing complex patterns. US patent, 3069654. 1962-12-18.

17]Duda R O. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 1972, 15(1): 11-15.

18]Guo S Y,  Zhai W J, Tang Q, et al. Combining the Hough transform and an improved least squares method for line detection. computer science, 2012, 39(4): 196-200.


 

一种SAR图像海洋涡旋形状自动描绘及信息提取方法


郑平1,2,3, 种劲松1,2, 王宇航1,2,3


1. 微波成像技术国家重点实验室, 北京 100190; 2. 中国科学院 电子学研究所, 北京 100190;3. 中国科学院大学, 北京 100049)


摘要:合成孔径雷达(SAR)为海洋涡旋的观测和研究提供了大量的图像数据。 利用SAR图像自动地描绘涡旋形状, 并提取涡旋信息, 对海洋涡旋研究和涡旋SAR图像应用有着重要意义。 该文针对SAR图像中螺旋形状的涡旋, 提出了一种SAR图像海洋涡旋形状自动描绘及信息提取方法。 该方法先将SAR图像骨架化, 再在SAR图像上绘制骨架图中检测到的对数螺旋线, 直观地描绘涡旋形状, 然后利用形状描绘结果提取涡旋信息。 该文利用sentinel-1黑海地区涡旋SAR图像进行了实验, 实验结果表明, 该方法能实现涡旋形状的自动描绘和涡旋信息提取, 形状描绘结果与涡旋实际形状相符, 提取的涡旋信息与手动提取的参考信息一致, 验证了方法的有效性


关键词:合成孔径雷达(SAR)图像; 海洋涡旋; 形状描绘; 信息提取


 

引用格式:ZHENG Ping, CHONG Jin-song, WANG Yu-hang. A method of automatic shape depiction and information extraction for oceanic eddies in SAR images. Journal of Measurement Science and Instrumentation, 2018, 9(3): 241-248. [doi:10.3969/j.issn.1674-8042.2018.03.006]



[full text view]