此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Development of an in-situ measuring system for blisk manufacturing



ZHANG Hai-tao1,2, LIU Shu-gui1,  LI Xing-hua1, SU Zhi-kun1


 (1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; 2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)


Abstract: In order to solve the in-situ measurement problem of workpiece with complex structures, a cantilever coordinate measuring machine (CCMM) is proposed to adapt to the finite space constraints of the 5-axis computer numerical control (CNC) processing site. Structure design of dense ball bearing shafting is analyzed and optimized. Factors affecting measurement accuracy of CCMM are analyzed, and measurement accuracy is validated by experiments. Results show that the structure of CCMM is able to satisfy requirements of technical specification, and the in-situ measurement of blisk manufacturing is realized. The CCMM developed is of important significance for machining quantity improvement of blisk and development of large aircraft production.


Key words: blisk; in-situ measurement; cantilever coordinate measuring machine (CCMM)


CLD number: TH721                                              Document code: A

Article ID: 1674-8042(2018)02-0115-06          doi: 10.3969/j.issn.1674-8042.2018.02.003


References


[1]Lin Z M. 3 history transform of china aviation industry. Aeronautical Manufacturing Technology, 2015, (1): 38-41.

[2]Huang C F. Modern aero-engine integral blisk and its manufacturing technology. Aeronautical Manufacturing Technology, 2006, (4): 94-100.

[3]Chen G. Survey on aero-engine development.Aeronautical Manufacturing Technology, 2000, (6): 24-34.

[4]Bhaumik S K, Bhaskaran T A, Rangaraju R, et al. Failure of turbine rotor blisk of an aircraft engine. Engineering Failure Analysis, 2002, 9(3):  287-301.

[5]Raab U, Levin S, Wagner L, et al. Orbital friction welding as an alternative process for blisk manufacturing. Journal of Materials Processing Technology, 2015, 215(1): 189-192.

[6]Behrens B A, Kerkeling J.  Pierced forgings:  Tool development for a combined single step process. Production Engineering, 2011, 5(2): 201-207.

[7]Kersting P, Zabel A. Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms.Advances in Engineering Software, 2009, 40(6): 452-463.

[8]Erdim H, Sullivan A. Cutter workpiece engagement calculations for five-axis milling using composite adaptively sampled distance fields. In: Proceedings of 14th CIRP Conference on Modeling of Machining Operations, 2013, (8): 438-443.

[9]Liu Z W, Chen S L, Zhang H Y, et al. Online automatic measuring method for blade surface. Tool Engineering, 2017, 52(2): 94-98.

[10]Wu L L, Fan R. The research of blade surface’s on-line inspection’s method. Machinery Design & Manufacture, 2010, 48(9): 97-99.

[11]Liu S G, Zhang H T, Su Z K. A study on the correction of detecting vector of revo applied in the non-orthogonal coordinate measuring machine. Journal of Tianjin University(Science and Technology), 2016, 49(9): 956-960.

[12] Zhang H T, Liu S G, Li X. A study on the key techniques of application of REVO five-axis system in non-orthogonal coordinate measuring machine. In: Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2017, 231(4): 730-736.

[13]Li X H, Zhang G X, Liu S G, et al. A study on machine calibration techniques. CIRP Annals Manufacturing Technology, 2013, 62(1):499-502.


整体叶盘加工原位测量系统的研制


张海涛1,2, 刘书桂1,  李杏华1, 苏智琨1


(1.天津大学 精密测试技术及仪器国家重点实验室, 天津 300072; 2. 天津大学 机械工程学院, 天津 300072)


摘要: 针对五轴数控机床加工现场狭长空间的限制以及整体叶盘原位测量的需求, 研制了一种悬臂式坐标测量机。 设计并优化了密珠轴系的结构, 分析了影响测量机测量精度的各项因素, 并通过实验对测量机的测量精度进行了验证。 结果显示, 所设计的测量机结构能够满足测量指标的要求, 可在机床加工原位对整体叶盘加工质量进行检测。 所研制的测量机对于提高整体叶盘加工质量及发展大飞机生产都具有重要意义。 


关键词: 整体叶盘; 原位测量; 悬臂式坐标测量机


引用格式:ZHANG Hai-tao, LIU Shu-gui,  LI Xing-hua, et al. Development of an in-situ measuring system for blisk manufacturing. Journal of Measurement Science and Instrumentation, 2018, 9(2): 115-120. [doi: 10.3969/j.issn.1674-8042.2018.02.003]


[full text view]