此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Vector control of induction motor based on fractional-order intelligent-integral speed controller



MIAO Zhong-cui1,2, HAN Tian-liang1, DANG Jian-wu1, JU Mei1


(1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;  2. Key Laboratory of Opto-Technology and Intelligent Control, Ministry of Education,  Lanzhou Jiaotong University, Lanzhou 730070, China)



Abstract:  To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control, an improved fractional-order intelligent proportional integral (IPIλ) controller was applied to the speed controller of the vector control system, which combined the intelligent fractional integral with the proportion according to the variation of deviation. Compared with proportional integral (PI) and fractional-order proportional integral (FOPI) controllers, the IPIλ controller achieved better control performance. The stimulation results indicate that the IPIλ controller can not only track the given speed quickly and accurately, but also have better anti-interference and robustness for load and parameters variations.


Key words: fractional-order intelligent-integral; induction motor; speed controller


CLD number: TM346                                             Document code: A

Article ID: 1674-8042(2018)02-0125-09        doi: 10.3969/j.issn.1674-8042.2018.02.005


References


[1]Fitzgerald A E, Charles K, Stephen D U Jr., et al. Electric machinery(sixth edition). Beijing: Publishing House of Electronics Industry, 2004.

[2]Yang G. A torque control strategy of induction motors taking efficiency of dynamic state into account. Transactions of China Electrotechnical Society, 2005, 2005(7): 694-700.

[3]Feng G H, Qi W, Zhang B Y, et al. Analysis and comparison of three-phase variable frequency PMSM with single-phase induction motor in household appliances. In: Proceedings of 2011 International Conference on Electrical Machines and Systems. Beijing: IEEE Press, 2011.

[4]Lokriti A, Zidani Y, Doubabi S. Fuzzy logic control contribution to the direct torque and flux control of an induction machine. In: Proceedings of 2011 International Conference on Multimedia Computing and Systems, 2011: 1-6.

[5]Uddin M, Radwan T, Rahman M. Performance of fuzzy-logic-based indirect vector control for induction motor drive. IEEE Transactions on Industry Applications, 2002, 38(5): 1219-1225.

[6]Fnaiech M A, Betin F, Nahid B, et al. Control position of a faulted six phase induction machine (6PIM) using sliding mode control. In: Proceedings of the 14th IEEE Mediterranean Electro Technical Conference, 2008: 502-507.

[7]Shang L, Hu J B. Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion, 2012, 27(2): 362-373.

[8]Kabache N, Moulahoum S, Sebaa K. Neural network based input output feedback control of induction motor. In: Proceedings of 13th International Conference on Optimization of Electrical and Electronic Equipment, Romania, 2012: 578-583. 

[9]Tajne K, Srivastava P. Comparative performance analysis of vector controlled induction motor drive for neural controller and dsp implemented PI controller. In: Proceedings of International Conference on Communication Systems and Network Technologies, Rajkot,  2012: 274-281.

[10]Qi X, Zhou X M, Ma X H. Improved predictive control algorithm for induction motors. Electric Machines and Control, 2013, 17(3): 62-69.

[11]Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real material. Journal of Applied Mechanics, 1984, 51(2): 294-298.

[12]Zhu C X, Zou Y. Summary of research on fractional-order control. Control and Decision, 2009, 24(2): 161-169.

[13]Podlubny I. Fractional-order systems and PID controllers. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.

[14]Muthukumar P, Balasubramaniam P, Ratnavelu K. Sliding mode control design for synchronization of fractional-order chaotic systems and its application to a new cryptosystem. International Journal of Dynamics & Control, 2017, 5(1): 115-123.

[15]Pan I, Das S. Intelligent fractional-order systems and control. Berlin: Springer, 2013.

[16]Monje C A, Chen Y, Vinagre B M, et al. Feliu-battle, fractional-order systems and controls: fundamentals and applications. Springer London, 2010, 50(1): 35-57.

[17]Miao Z C, Dang J W, Zhang X, et al. PSO-based optimum design of PIλ controller for DC double closed-loop control. Computer Engineering and Applications, 2015, 51(7): 252-257.

[18]Rajasekhar A, Das S, Abraham A. Fractional order PID controller design for speed control of chopper fed DC motor drive using artificial bee colony algorithm. In: Proceedings of 2013 World Congress on Nature and Biologically Inspired Computing, 2013: 259-267.

[19]Xue D Y, Zhao C N. Fractional order PID controller design for fractional-order system. Control Theory & Applications, 2007, 24(5): 771-776.

[20]Miao Z C, Zhang H, Ju M. et al. Research of the fractional-order anti-windup controller for permanent magnet synchronous motor. Control Engineering of China, 2016, (10): 1556-1561.

[21]Sun Y. Intelligent control theory and application. Beijing: Tsinghua University Press, 2009.


基于分数阶智能积分的感应电机速度控制研究


缪仲翠1,2, 韩天亮1, 党建武1, 巨梅1


(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070)


摘要:为进一步改善基于矢量控制的异步电动机调速系统的动、 静态性能, 并提高其鲁棒性, 将改进的分数阶智能积分(IPIλ)控制器应用于矢量控制系统的速度调节器。 改进的分数阶智能积分根据偏差的变化将分数阶积分和比例相结合, 通过与普通PI和FOPI控制器相比较, 发现IPIλ具有更好的控制效果。 仿真试验表明, 分数阶智能积分控制器不仅能够快速、精确地跟踪给定速度, 而且对负载扰动及参数变化具有更好的抗扰性和较强的鲁棒性。 


关键词:分数阶智能积分; 感应电机; 转速调节器


引用格式:MIAO Zhong-cui, HAN Tian-liang, DANG Jian-wu, et al. Vector control of induction motor based on fractional-order intelligent-integral speed controller. Journal of Measurement Science and Instrumentation, 2018, 9(2): 125-133. [doi: 10.3969/j.issn.1674-8042.2018.02.005]


[full text view]