此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Active disturbance rejection control FCS-MPC strategy based on ESO of PMSM system


ZHANG Bin, WEN Xue, LI Kun-qi


(School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract: In order to improve the control performance of three-phase permanent magnet synchronous motor (PMSM) system, an active disturbance rejection finite control set-mode predictive control (FCS-MPC) strategy based on improved extended state observer (ESO) is proposed in this paper. ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force (EMF) term of motor speed. Active disturbance rejection control (ADRC)is applied as speed controller. The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm. Compared with the FCS-MPC strategy based on PI controller, the constructed control strategy can guarantee the reliable and stable operation of PMSM system, and has good speed tracking, anti-interference ability and robustness.


Key words: extended state observer(ESO); auto disturbance rejection control (ADRC); finite control set-mode predictive control (FCS-MPC); permanent magnet synchronous motor (PMSM); arc-hyperbolic sine function


CLD number: TM341                                            Document code: A

Article ID: 1674-8042(2018)02-0140-08       doi: 10.3969/j.issn.1674-8042.2018.02.007


References


[1]Dai Y, Song L, Cui S. Development of PMSM drives for hybrid electric car applications. IEEE Car Transactionson Magnetics, 2007, 43(1): 434-437. 

[2]Xia C L, Yan Y. Matrix converter permanentmagnet synchronous motor drives.Transactionof China Eletrotechnical Society, 2015, 30(23): 1-9.

[3]Rashed M, Macconnell P F A, Stroncach A, et al. Sensorless indirect rotor field orientation speed control of permanent magnet synchronous motor using adaptive rotor flux estimator. In: Proceedings of the 44th IEEE Conference on Decision and Control, 2005.

[4]Simanek J, Novak J, Cerny O, et al. FOC  and flux weakening for traction drive with  permanent magnet synchronous motor. In: Proceedings of IEEE International Symposium on Industrial Electronics. IEEE Xplore, 2008: 753-758.

[5]Foo G, Sayeef S, Rahman M F. Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive.IEEE Transactions on Energy  Conversion, 2010, 25(1): 25-33.

[6]Rodriguez J, Cortes P. Predictive control of power converters and electrical drives. Predictive Control of Power Converters &  Electrical Drives, 2012, 6(4): 1785-1786.

[7]Moon H T, Kim H S, Youn M J. A discrete-time predictive current control for PMSM.  IEEE Transactions on Power Electronics, 2003, 18(1): 464-472.

[8]Geyer T, Papafotiou G, Morari M. Model predictive direct torque control—Part I: concept, algorithm, and analysis. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1894-1905.

[9]Preindl M, Schaltz E. Sensorless model   predictive direct current control using novel  second-order pllobserver for pmsm drive systems. Industrial Electronics IEEE Transactions on, 2011, 58(9): 4087-4095.

[10]Zhang Y C, Yang H T, Wei X L. Prediction control of permanent magnet synchronous motor model based on fast vector selection. Journal of Electrical Engineering, 2016, 31(6): 66-73.

[11]Rodriguez J, Kennel R M, Espinoza J R, et al. High performance control strategies for  electrical drives: an experimental assessment.  IEEE Transactions on Industrial Electronics, 2012, 59(5): 812-820.

[12]Morel F, Lin S X, Retif J M, et al. A comparative study of predictive current control schemes for a permanent magnet synchronous machine drive. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2715-2728.

[13]Cortes P, Kouro S, La Rocca B, et al. Guidelines forweighting factors design in Model  Predictive Control of power converters and drives. IEEE International Conference on Industrial Technology, 2009: 1-7.

[14]Zhang Y C, Gao S Y. Measurement and prediction ofpermanent magnet synchronous motor considering delay compensation. Journal of Electrical Engineering, 2016, 11(3): 13-20.

[15]Zhu Z Q, Gong L M. Investigation of effectiveness of sensorless operation in carrier signal-injection-based sensorless controlmethod-s. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3431-3439.

[16]Smidl V, Peroutka Z. Reduced-order square-root EKF for sensorless control of PMSM drives. Conference of the IEEE Industrial  Electronics Society, 2011, 6854(5): 2000-2005.

[17]Orlowska K T, Dybkowski M. Stator-current-based mras estimator for a wide range speed sensorless induction-motor drive. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1296-1308. 

[18]Teng Q F, Bai J Y, Zhu J G, et al.Predictive torque control of three phase permanent magnet synchronous motor based on sliding mode modelreference adaptive observer.Control Theory & Applications, 2015, 32(2): 150-161.

[19]Zhou T. Expansive state observer based on  inverse hyperbolic sine function. Control and Decision, 2015, 30(5): 943-946.

[20]Zhao T. Study on tracking differentials based on inverse hyperbolic sine function.Control  and Decision, 2014, 29(6): 1139-1142.

[21]Zhao L Y, Wang S J. Automatic disturbance  control  based on arctangent nonlinear function. Journal of Shanghai  Jiaotong University, 2013, 47(7): 1043-1048.

[22]Miranda H, Cortes P, Yuz J I, et al. Predictive torque control of  induction machines  based on state space models. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1916-1924. 


基于ESO的PMSM系统自抗扰FCS-MPC策略


张斌, 汶雪, 李坤奇


(兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070)


摘要: 为了提高三相永磁同步电机(PMSM)系统的控制性能, 以反双曲正弦函数为基础, 通过改进的扩张状态观测器(ESO)获取转速和反电动势项高精度估值, 以自抗扰控制作为转速控制调节器, 提出了基于ESO的自抗扰有限控制集模型预测控制(FCS-MPC)策略, 以减小电磁转矩脉动,降低算法的复杂性和计算量。 与基于PI的FCS-MPC策略相比, 新的控制策略能够保证PMSM系统稳定运行, 具有良好的转速跟踪性、 抗干扰性和鲁棒性。


关键词:扩张状态观测器; 自抗扰控制; 有限状态模型预测控制; 永磁同步电机; 反双曲正弦函数


引用格式:ZHANG Bin, WEN Xue, LI Kun-qi.  Active disturbance rejection control FCS-MPC strategy based on ESO of PMSM system. Journal of Measurement Science and Instrumentation, 2018, 9(2): 140-147. [doi: 10.3969/j.issn.1674-8042.2018.02.007]


[full text view]