此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Tactical intention recognition of aerial target based on XGBoost decision tree


WANG Lei, LI Shi-zhong


(College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)


Abstract: In order to improve the accuracy of target intent recognition, a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention. Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination. To verify the accuracy of recognition results, we compare the experimental results of this paper with the results in the literatures. The experiment shows that the probability of tactical intention recognition through this method is improved, so this method is feasible.


Key words: tactical intention recognition of target; XGBoost (eXtreme Gradient Boosting)decision tree; Dempster-Shafer combination rule 


CLD number: E91                                                    Document code: A

Article ID: 1674-8042(2018)02-0148-05         doi: 10.3969/j.issn.1674-8042.2018.02.008


References


[1]Yuan Z J, Xu Z G, Deng S H. The model for predication of fighting intenting under sequential game. System Engineering Theory and Practice, 1997, 7(7): 72-78.

[2]Li W S, Wang S B. Situation assessment based on bayesian networks. System Engineering Theory and Practice, 2003, 25(4): 480-483. 

[3]Cao S Y, Liu Y A, Xue S. Target tactical intention recognition method of improved high-dimensional data similarity. Transducer and Microsystem Technologies, 2017, 36(5): 25-28.

[4]Yao Q K, Liu S J, He X Y. Research and prospect of battlefield target operational intention recognition. Journal of Command and Control, 2017, 3(2): 127-131. 

[5]Chen T, Guestrin C. Xgboost: A scable tree boosting system. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

[6]Yang F B, Wang X X. D-S evidence theory conflict evidence synthesis method. Beijing: National Defense Industry Press, 2010.

[7]Sun Y L, Bao L. Study on recognition technique of targets’ tactical intentions in sea battlefield based on D-S evidence theory. Ship Electronic Engineering, 2012, 32(5): 48-51.


基于XGBoost决策树的空中目标战术意图识别


王磊, 李世中


(中北大学 机电工程学院, 山西 太原 030051)


摘要:为了提高空中目标战术意图识别的准确度, 提出了一种基于XGBoost决策树的目标意图识别方法。 以python为开发工具, 基于文献中的数据得到战术意图识别概率, 并依靠Dempster-Shafer证据合成理论得出贯序意图概率。 为了验证识别结果的准确性, 将其与文献中的实验结果进行对比。 结果表明, 该方法可提高目标真实意图的识别概率, 故该方法是可行的。


关键词:目标战术意图识别; XGBoost决策树; Dempster-Shafer证据合成理论


引用格式:WANG Lei, LI Shi-zhong. Tactical intention recognition of aerial target based on XGBoost decision tree. Journal of Measurement Science and Instrumentation, 2018, 9(2): 148-152. [doi: 10.3969/j.issn.1674-8042.2018.02.008]


[full text view]