YANG Li1, WANG Lang-zhu1, FENG Bo2, WANG Hong-lin3
(1. School of Power Engineering, Chongqing Electric Power College, Chongqing 400053, China;2. School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China;3. Training Base, Army Service University of People’s Liberation Army of China, Xiangyang 441000, China)
Abstract: In medium voltage-high power (MV-HP) applications, the high switching frequency of power converter will result in unnecessary energy losses, which directly affect efficiency. To resolve this issue, a novel finite control set-model predictive control (FCS-MPC) with low switching frequency for three-level neutral point clamped-active front-end converters (NPC-AFEs) is proposed. With this approach, the prediction model of three-level NPC-AFEs is established in α-β reference frame, and the control objective of low average switching frequency is introduced into a cost function. The proposed method not only achieves the desired control performance under low switching frequency, but also performs the efficient operation for the three-level NPC-AFEs. The simulation results are provided to verify the effectiveness of proposed control scheme.
Key words: finite control set-model predictive control (FCS-MPC); three-level neutral point clamped active front-end converters (NPC-AFEs); switching frequency
CLD number: TN624 Document code: A
Article ID: 1674-8042(2018)02-0153-07 doi: 10.3969/j.issn.1674-8042.2018.02.009
References
[1]Habibullah M, Lu D C, Xiao D, et al. Predictive torque control of induction motor sensorless drive fed by a 3L-NPC inverter. IEEE Transactions on Industrial Informatics, 2016.
[2]Yazdani A, Iravani R. Dynamic model and control of the NPC-based back-to-back HVDC system. IEEE Transactions on Power Delivery, 2005, 21(1): 414-424.
[3]Calle-Prado A, Alepuz S, Bordonau J, et al. Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1503-1514.
[4]Choudhury A, Pillay P, Williamson S S. Comparative analysis between two-level and three-level dc/ac electric vehicle traction inverters using a novel dc-link voltage balancing algorithm. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 529-540.
[5]Choudhury A, Pillay P, Williamson S S. DC-Bus voltage balancing algorithm for three-level neutral-point-clamped (npc) traction inverter drive with modified virtual space vector. IEEE Transactions on Industry Applications, 2016, 52(5): 3958-3967.
[6]Song W, Ma J, Zhou L, et al. Deadbeat predictive power control of single-phase three-level neutral-point-clamped converters using space-vector modulation for electric railway traction. IEEE Transactions on Power Electronics, 2015, 31(1): 721-732.
[7]Zhang Z, Hackl C, Kennel R. Computationally efficient dmpc for three-level npc back-to-back converters in wind turbine systems with PMSG. IEEE Transactions on Power Electronics, 2017, 22(2): 762-773.
[8]Madhusoodhanan S, Mainali K, Tripathi A, et al. Harmonic analysis and controller design of 15 kv sic igbt-based medium-voltage grid-connected three-phase three-level npc converter. IEEE Transactions on Power Electronics, 2017, 32(5): 3355-3369.
[9]Deng Y, Li J, Shin K H, et al. Improved modulation scheme for loss balancing of three-level active npc converters. IEEE Transactions on Power Electronics, 2017, 32(4): 2521-2532.
[10]Rodriguez J, Pontt J, Silva C A, et al. Predictive current control of a voltage source inverter. IEEE Transactions on Industrial Electronics, 2007, 54(1): 495-503.
[11]Townsend C, Mirzaeva G, Goodwin G. Dead-Time compensation for model predictive control of power inverters. IEEE Transactions on Power Electronics, 2016, 32(9): 7325-7337.
[12]Mwasilu F, Nguyen H, Han H C, et al. Finite set model predictive control of interior pm synchronous motor drives with an external disturbance rejection technique. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 762-773.
[13]Hu J. Improved dead-beat predictive dpc strategy of grid-connected dc-ac converters with switching loss minimization and delay compensations. IEEE Transactions on Industrial Informatics, 2013, 9(2): 728-738.
[14]Hu J, Zhu J, Dorrell D G. Model-predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction. IEEE Transactions on Industry Applications, 2015, 51(1): 587-594.
[15]Ma J, Song W, Wang S, et al. Model predictive direct power control for single phase three-level rectifier at low switching frequency. IEEE Transactions on Power Electronics, 2018, 33(2): 1050-1062.
[16]Kwak S, Park J C. Switching strategy based on model predictive control of vsi to obtain high efficiency and balanced loss distribution. IEEE Transactions on Power Electronics, 2014, 29(9): 4551-4567.
[17]Peng F Z, Lai J S. Generalized instantaneous reactive power theory for three-phase power systems. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1): 293-297.
[18]Rodriguez J, Kazmierkowski M P, Espinoza J R, et al. State of the art of finite control set model predictive control in power electronics. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1003-1016.
[19]Cortes P, Kouro S, La Rocca B, et al. Guidelines for weighting factors design in Model Predictive Control of power converters and drives. In: Proceedings of IEEE International Conference on Industrial Technology, 2009: 1-7.
具有低开关频率的三电平有源前端变换器
模型预测控制研究杨瓅1, 王朗珠1, 冯波2, 王虹淋3
(1. 重庆电力高等专科学校 电力工程学院, 重庆 400053;2. 重庆理工大学 电气与电子工程学院, 重庆 400054;3. 中国人民解放军陆军勤务学院 训练基地, 湖北 襄阳 441000)
摘要: 针对中压大功率(medium voltage-high power, MV-HP)应用领域中功率变换器的高开关频率将导致功率损耗较大及效率较低的状况, 研究了一种具有低开关频率的三电平中点钳位有源前端变换器(Neutral point clamped-active front-end converters, NPC-AFEs)有限控制集模型预测控制(Finite control set-model predictive control, FCS-MPC)策略。 该策略通过坐标变换构建静止α-β坐标系下三电平NPC-AFEs的预测模型, 引入降低平均开关频率的控制目标项。 该方法在兼顾控制性能的同时有效地降低了功率变换器的平均开关频率, 实现了低开关频率下三电平NPC-AFEs地高效运行。 仿真结果表明了该控制策略的有效性。
关键词: 有限控制集模型预测控制; 三电平中点铂位有源前端变换器; 开关频率
引用格式:YANG Li, WANG Lang-zhu, FENG Bo, et al. Model predictive control of three-level active front-end converter with low switching frequency. Journal of Measurement Science and Instrumentation, 2018, 9(2): 153-159. [doi: 10.3969/j.issn.1674-8042.2018.02.009]
[full text view]