LI Wei, HU Xiao-hui, WANG Hong-chuang
(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: In order to improve the global search ability of biogeography-based optimization (BBO) algorithm in multi-threshold image segmentation, a multi-threshold image segmentation based on improved BBO algorithm is proposed. When using BBO algorithm to optimize threshold, firstly, the elitist selection operator is used to retain the optimal set of solutions. Secondly, a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations. Thirdly, to reduce the blindness of traditional mutation operations, a mutation operation through binary computation is created. Then, it is applied to the multi-threshold image segmentation of two-dimensional cross entropy. Finally, this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm. The experimental results show that the method has good convergence stability, it can effectively shorten the time of iteration, and the optimization performance is better than the standard BBO algorithm.
Key words: two-dimensional cross entropy; biogeography-based optimization (BBO) algorithm; multi-threshold image segmentation
CLD number: TP391 Document code: A
Article ID: 1674-8042(2018)01-0042-08 doi: 10.3969/j.issn.1674-8042.2018.01.006
References
[1] Dan S. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.
[2] Roy P K, Ghoshal S P, Thakur S S. Biogeography-based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Systems with Applications, 2010, 37(12): 8221-8228.
[3] Chen Z, Hu Z J. A modified hybrid PSO-BBO algorithm for dynamic economic dispatch. Power System Protection & Control, 2014, 42(18): 44-49.
[4] Xiong G J, Shi D Y, Duan X Z. Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning. Computers & Operations Research, 2014, 41(1): 125-139.
[5] Zhang X M, Zheng Y B. Precise 2-D Tsallis entropy image threshold segmentation and its fast recursive realization. Chinese Journal of Scientific Instrument, 2011, 32(8): 1796-1802.
[6] Sathya P D, Kayalvizhi R. Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Engineering Applications of Artificial Intelligence, 2011, 24(4): 595-615.
[7] Ma H P, Li X, Lin S D. Analysis of mobility model of biogeography-based optimization algorithm. In: Proceedings of China Intelligent Automation Conference, 2009: 16-21.
[8] Wu B, Lin J G, Cui Z Y. Comparison of migration operator in biogeography-based optimization algorithm. Computer Engineering and Applications, 2012, 48(25): 61-64.[9] Wan S, Liu J, Yu B. Exponential cross entropy thresholding for seal image based on 2-dimensional oblique segmentation. Microcomputer & Its Applications, 2013, 47(12): 38-42.
[10] Fang J L, Lei B. Two-dimensional cross-entropy linear-type threshold segmentation method for gray-level images. Acta Electronica Sinica, 2009, 35(4): 751-755.
[11] Hou G X, Bi D Y, Wu C K. Study on image segm-entation quality evaluation method. Journal of Image and Graphics, 2000, 5(1): 42-46.
基于改进BBO算法的二维交叉熵多阈值图像分割
李 薇, 胡晓辉, 王鸿闯
(兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070)
摘 要: 为了提高生物地理学优化(BBO)算法在多阈值图像分割中的全局搜索能力, 提出一种基于改进的BBO算法的多阈值图像分割。 在运用BBO算法进行优化阈值时, 首先, 采用精英选择算子保留出最优的几组解。 其次, 引入一种基于优秀解和待迁出解融合的迁移策略, 以减少传统迁移操作的过早收敛以及无效迁移等行为。 再次, 为了减少传统变异操作的盲目性, 创建一种通过二进制计算的变异操作。 然后将其应用到二维交叉熵的多阈值图像分割中。 最后, 使用该方法对典型图像进行分割实验, 并与粒子群算法的二维多阈值分割, 以及基于标准的BBO算法的二维多阈值图像分割进行比较, 实验结果表明: 该方法具有良好的收敛稳定性, 可以有效缩短迭代的时间, 并且优化性能优于标准的BBO算法。
关键词: 二维交叉熵; 生物地理学优化(BBO)算法; 多阈值图像分割
引用格式: LI Wei, HU Xiao-hui, WANG Hong-chuang. Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm. Journal of Measurement Science and Instrumentation, 2018, 9(1): 42-49. [doi: 10.3969/j.issn.1674-8042.2018.01.006]
[full text view]