YANG Rui-feng1,2, HU Chen-hao1,2, GUO Chen-xia1,2, GAI Ting1,2, LANG Guo-wei1,2
(1. School of Instrument and Electronics, North University of China, Taiyuan 030051, China;2. Automatic Test Equipment and System Engineering Research Center of Shanxi, Taiyuan 030051, China)
Abstract: Different from the traditional contact surface topography measurement, reflective intensity-modulated fiber optic sensor (RIM-FOS) has the unique advantages of non-contact nondestructive detection. This paper briefly introduces the principle and performance of RIM-FOS for surface topography measurement and compares with several other methods of topography measurement. Based on the review of its development process, this paper summarizes and analyses the hot issues of RIM-FOS in the surface topography measurement, then predicts the future trend for a guidance of the further study.
Key words: reflective intensity-modulated fiber optic sensor (RIM-FOS); topography measurement; probe structure; interference compensation
CLD number: TP212 Document code: A
Article ID: 1674-8042(2018)01-0059-09 doi: 10.3969/j.issn.1674-8042.2018.01.008
References
[1] Manojlovic L M, Zivanov M B, Marincic A S. White-light interferometric sensor for rough surface height distribution measurement. IEEE Sensors Journal, 2010, 10(6): 1125-1132.
[2] Gong Y. Research on key technology of three dimensional multi-elements measurement of parts and development of measure system. Beijing: China Academy of Machinery Science & Technology, 2013.
[3] Yang Y, Yamazaki K, Aoyama H. Fiber optic surface topography measurement sensor and its design study. Precision Engineering, 2000, 24(1): 32-40.
[4] Yuan L B. Modulation types and its theoretical analysis methods. Optical Communication Technology, 1994, 18(2): 143-165.
[5] Li X Q, Wang Z, Fu L H. A fast and in-situ measuring method using laser triangulation sensors for the parameters of the connecting rod. Sensors, 2016, 16(10): 1679.
[6] Chun B S, Kim K, Gweon D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope. Review of Scientific Instruments, 2009, 80(7): 073706.
[7] Xu J Q, Wang Y S, Si S C, et al. Study on scan-phase-shifting profilometry for measurement of 3-D object shapes. Acta Photonica Sinica, 2004, 33(10): 1210-1213.[8] Laopornpichayanuwat M, Visessamit J, Tianprateep M. 3-D Surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode. Measurement, 2012, 45(10): 2400-2406.
[9] Zhang W. The research on measurement of micro-structure with sharp curvature. Hangzhou: Zhejiang University, 2013.
[10] Frank W E. Detection and measurement device having a small flexible fiber transmission line. US: 3273447A, 1966.
[11] Kissinger C D. Fiber optic proximity probe. US: 332-7584A, 1967.
[12] Cook R O, Hamm C W. Fiber optic lever displacement transducer. Applied Optics, 1979, 18(19): 3230-3241.
[13] Bennett J M, Mattsson L. Introduction to surface roughness and scattering. Washington D.C. Optical Society of America, 1989, 13(1): 62.
[14] Beckmann P. The seattering of electromagnetic waves from rughness surfaces.New York: Norwood, MA, Artech House, Inc., 1983.
[15] Spurgeon D, Slater R A C. In-process indication of surface roughness using a fibre-optics transducer. In: Proceedings of the Fifteenth International Machine Tool Design and Research Conference, Macmillan Education UK, 1975: 339-347.
[16] Lin G C I, Shea T, Hoang K. Measurement of surface roughness with a laser beam. In: Australian Conference on Manufacturing Engineering: Preprints of Papers, Institution of Engineers, Australia, 1977: 132.
[17] North W P T, Agarwal A K. Surface roughness measurement with fiber-optics. Journal of Dynamic Systems Measurement & Control, 1983, 46(6): 1001-1002.
[18] Domanski A, Ejchart W, Jedrzejewski J, et al. The fiber-optic instrument for extremely small roughness measurement. In: Proceedings of Optical Fibres and Their Applications IV, International Society for Optics and Photonics, 1986, 670: 116-119.[19] Fawcett S C, Keltie R F. Use of a fiber optic displacement probe as a surface finish sensor. Sensors & Actuators A Physical, 1990, 24(1): 5-14.
[20] Persson U. A fibre-optic surface-roughness sensor. Journal of Materials Processing Technology, 1999, 95(1/3): 107-111.
[21] Yang Y, Yamazaki K, Aoyama H. Fiber optic surface topography measurement sensor and its design study. Precision Engineering, 2000, 24(1): 32-40.
[22] Zhao Y, Li P, Wang C, et al. A novel fiber-optic sensor used for small internal curved surface measurement. Sensors & Actuators A Physical, 2000, 86(3): 211-215.
[23] Zhang K, Butler C, Yang Q, et al. A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks. IEEE Transactions on Instrumentation & Measurement, 1997, 46(4): 899-902.
[24] Suparta G B, Nugroho W, Swakarma I K, et al. Metal roughness profile inspection using a micro-displacement fiber optic bundled sensor. Journal of Optoelectronics & Advanced Materials, 2009, 3(1): 65-68.
[25] Ma Y Z, Li G P, Liu H G, et al. Compensation of the optical fiber sensor based on the surface quality detection for steel balls. In: Proceedings of Chinese Control and Decision Conference, IEEE, 2011: 1265-1268.
[26] Rahman H A, Rahim H R A, Ahmad H, et al. Fiber optic displacement sensor for imaging of tooth surface roughness. Measurement, 2013, 46(1): 546-551.
[27] Lian S W, Yuan G. Real-time non-contact optical detection system for roller deformation based on artificial neural network. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2291-2294.
[28] Lu H B, Zhou D H, Qi X M. Study on fiber sensor for measuring surface roughness. Chinese Journal of Scientific Instrument, 1990, 11(4): 441-445.
[29] Zhou D H, Lu H B, Qi X M. The characteristic of laser intensity fluctuation and its compensation technology in the fiber optic sensor system. Opto-Electronic Engineering, 1991, 18(5): 31-36.
[30] Yang H Y, Lu H B, Xu T, et al. Research on intensity compensation of the RIM fiber optic sensor. Instrument Technique and Sensor, 2001, (5): 4-6.
[31] Yang H Y. Research on the mathematical model and key technologies of the reflective intensity modulated fiber-optic sensor. Changsha: National University of Defense Technology, 2002.
[32] Lu H B, Yu Z X, Yan S H, et al. The mathematical model of the output characteristics for optic fiber pair of reflection type optic fiber sensor. Opto-Electronic Engineering, 1998, 25(5): 17-24.
[33] Yang H Y, Lu H B, Xu T, et al. Effects of optical fiber parameters on the intensity modulation property of the reflective fiber optic sensors. Acta Photonica Sinica, 2002, 31(1): 74-78.
[34] Lu H B, Zhou D H, Qi X M, et al. Research on cause for effect of polarized propertles of laser upon intensity compensation in fiber optic sensing system. Optical Instruments, 1994, (1): 12-16.
[35] Li Y F, Ren J K. Modeling and simulation research on the optic fiber displacement sensor with multi-concentric distribution bundles. Journal of Changsha University of Science and Technology (Natural Science), 2009, 6(4): 59-63.
[36] Zhao Y, Li P S. Research on improving the resolution of laser optic fiber measuring system. Opto-Electronic Engineering, 1999, 26(5): 27-30.
[37] Zhao Y, Li P S, Pu Z B. MJ internal threads for aerospace purposes and their noncontact inspection methods. Measurement Technique, 1999, (11): 3-4.
[38] Chen Y P, Cao H M, Zhang G, et al. Modeling and simulation of reflective optical fiber bundle displacement sensors. Journal of Optoelectronics Laser, 2005, 16(6): 653-658.
[39] Wang Y, Yuan C M, Chen Y P. Application of BP neural network in non-contact measurement path planning. Machinery & Electronics, 2012, (9): 35-39.
[40] Liu D. The Technology and application of 3D profile surface measurement based on optical fiber sensor. Zhengzhou: Zhongyuan University of Technology, 2016.
[41] Wang C L. Study on the methods of multiple optical fibers for steel ball surface defects inspection. Jinan: University of Jinan, 2014.
[42] Wang X D. Intelligent signal processing of fiber optic sensor for simultaneous measurement of displacement and surface roughness. In: Proceedings of SPIE, the International Society for Optical Engineering, 2002, 4920: 427-432.
[43] Patil S S, Shaligram A D. Design, development and experimental study of novel configuration of retro reflective fiber optic sensor for measuring of surface roughness. In: Proceedings of International Symposium on Physics and Technology of Sensors, IEEE, 2015: 129-132.
[44] Puangmali P, Althoefer K, Seneviratne L D. Mathematical modeling of intensity-modulated bent-tip optical fiber displacement sensors. IEEE Transactions on Instrumentation & Measurement, 2010, 59(2): 283-291.
[45] Jia B H, He L, Yan G D, et al. A differential reflective intensity optical fiber angular displacement sensor. Sensors, 2016, 16(9): 1-15.
[46] Xu X M. Inner surface roughness measurement of holes based on reflective intensity modulation fiber optic sensor. Harbin: Harbin Institute of Technology, 2010.
[47] Shen W, Wu X W, Meng H Y, et al. Long distance fiber-optic displacement sensor based on fiber collimator. Review of Scientific Instruments, 2010, 81(12): 123104.[48] Lee H S, Lee S S. Reflective-type photonic displacement sensor incorporating a micro-optic beam shaper. Optics Express, 2014, 22(1): 859.
[49] Guo Y, Wang Y T, Jin M. Improvement of measurement range of optical fiber displacement sensor based on neutral network. Optik-International Journal for Light and Electron Optics, 2014, 125(1): 126-129.
[50] Liao S H. Research and development of surface contour detection system based on optical fiber sensor. Wuhan: Huazhong University of Science and Technology, 2012.[51] Zhu N N, Zhang J. Surface roughness measurement based on fiber optic sensor. Measurement, 2016, 86: 239-245.
[52] Hang Z Y, Xue G Q, Dong L, et al. A review of recent developed and applications of plastic fiber optic displacement sensors. Measurement, 2014, 48(1): 333-345.
[53] Shi X M. Research on reflected intensity modulated optical fiber distance sensor based on plastic optical fiber. Harbin: Harbin Engineering University, 2013.
用于形貌测量的反射式光纤传感器研究综述
杨瑞峰1,2, 胡晨昊1,2, 郭晨霞1,2, 盖 婷1,2, 郎国伟1,2
(1. 中北大学 仪器与电子学院, 山西 太原 030051;2. 山西省自动化检测装备与系统工程技术研究中心, 山西 太原 030051)
摘 要: 区别于传统接触式表面形貌测量技术, 光纤传感器具有非接触无损检测等独特优点。 本文简要介绍了用于测量表面形貌的反射式强度调制光纤传感器(RIM-FOS)的原理及性能特点, 并与其他几种主流形貌测量方法对比。 综述其在表面形貌测量中的应用与发展过程, 分析反射式光纤传感器在表面形貌测量中热点问题的研究现状, 总结并展望今后的发展趋势。 关键词: 反射式光纤传感; 形貌测量; 探头结构; 干扰补偿
引用格式: YANG Rui-feng, HU Chen-hao, GUO Chen-xia, et al. Review of reflective fiber optic sensors for measuring surface topography. Journal of Measurement Science and Instrumentation, 2018, 9(1): 59-67. [doi: 10.3969/j.issn.1674-8042.2018.01.008]
[full text view]