此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

An investigation on mechanical properties of (Al63Cu25Fe12)p/ZL101 composites by squeeze casting

TIAN Jin-zhong, ZHAO Yu-hong, ZHANG Feng-hao, LI Hui-jun

 

College of Materials Science and Engineering, North University of China, Taiyuan 030051, China)

 

Abstract: Influence of different extrusion pressures and pouring temperatures on comprehensive performance of (Al63Cu25Fe12)p/ZL101 composites is studied in this paper. The results show that the tensile strength, elongation and hardness of (Al63Cu25Fe12)p/ZL101 composite increase with the squeezing pressure increasing from 50 MPa to 100 MPa, and gradually reduce from 100 MPa to 150 MPa. In addition, the mechanical properties of the composite can be improved with pouring temperature growing, while the temperature should not exceed 760  ℃. When squeezing pressure is 100 MPa and pouring temperature is 720 ℃, mechanical properties of composites are the best. Finally, the mechanical properties of (Al63Cu25Fe12)p/ZL101 composite will be improved by suitable heat treatment technology.

 

 

Key words: (Al63Cu25Fe12)p/ZL101 composites; quasicrystalline; heat treatment; squeeze casting

 

CLD number: TG249.2       Document code: A

 

Article ID: 1674-8042(2018)01-0078-06        doi: 10.3969/j.issn.1674-8042.2018.01.011

 

 

References

 

1] Scudino S, Surreddi K B, Sager S, et al. Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites. Journal of Materials Science, 2013, 43(13): 4518-4526.[2] Scudino S, Liu G, Sakaliyska M, et al. Powder metallurgy of Al-based metal matrix composites reinforced with  β -Al3Mg2 intermetallic particles: analysis and modeling of mechanical properties. Acta Materialia, 2009, 57(15): 4529-4538.

3] Li J P, Zhao Y H, Dong S Q, et al. The microstructural characterization of cast SiC/ZL101 aluminum alloy composite. Journal of Xian Institute of Technology, 1993, 13(2): 79-85.  

4] Lloyd D J, Lagace H, Mcleod A, et al. Microstructural aspects of aluminum-silicon carbide particulate composites produced by a casting method. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107: 73-80.

5] Schurack F, Eckert J, Schultz L. Processing and mechanical properties of quasicrystal-reinforced Al-alloys. MRS Proceedings, 2000, 643: 9-11.

6] Zhu M, Yang G C, Cheng S L, et al. Microstructures and phase transformation of Al-based composite materials reinforced by Al-Cu-Co decagonal quasicrystalline particles. Rare Metal Materials and Engineering, 2009, 38(9): 1584-1588.

7] Srivastava V C, Huttunen-Saarivirta E, Cuic C, et al. Bulk synthesis by spray forming of Al-Cu-Fe and Al-Cu-Fe-Sn alloys containing a quasicrystalline phase. Journal of Alloys and Compounds, 2014, 597(10): 258-268.

8] Moskalewicz T, Kot M, Wendler B. Microstructure development and properties of the AlCuFe quasicrystalline coating on near-ɑ titanium alloy. Applied Surface Science, 2011, 258(2): 848-859.[9] Ali F, Scudino S, Anwar M S, et al. Al-based metal matrix composites reinforced with Al-Cu-Fe quasicrystalline particles: Strengthening by interfacial reaction. Journal of Alloys and Compounds, 2014, 607: 274-279.

10] Kaloshkin S D, Tcherdyntsev V V, Laptev A I. Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites. Journal of Materials Science, 2004, 39(16/17): 5399-5402.

11] Lityńska-Dobrzyńska L, Dutkiewicz J, Stan-G owińska K, et al. Characterization of aluminium matrix composites reinforced by Al-Cu-Fe quasicrystalline particles. Journal of Alloys and Compounds, 2015, 643: 114-118.

12] Yong X, Chang I T, Jones I P. Formation of a quasicrystalline phase in mechanically alloyed Al65Cu25Fe15. Journal of Alloys and Compounds, 2005, 387(1): 128-133.

13] Ali F, Scudino S, LIU G, et al. Modeling the strengthening effect of Al-Cu-Fe quasicrystalline particles in Al-based metal matrix composites. Journal of Alloys and Compounds, 2012, 5365(12): 130-133.

 

 挤压铸造法对(Al63Cu25Fe12)p/ZL101复合材料性能的影响

 

田晋忠, 赵宇宏, 张峰浩, 李会军

 

(中北大学 材料科学与工程学院, 山西 太原 030051)  

 

 :  研究了挤压压力和浇注温度对(Al63Cu25Fe12)p/ZL101复合材料性能的影响。 结果表明: 当挤压压力为50-100 MPa时, 复合材料的抗拉强度、 伸长率和硬度会随着压力的增加而增大, 然而当挤压压力为100-150 MPa时, 随着压力的升高, 其综合力学性能会随之下降。 此外, 复合材料的力学性能会随着浇注温度的升高而提高, 但温度不能超过760 ℃。 当挤压压力为100 MPa, 浇注温度为720 ℃时, 复合材料的综合力学性能最优。  最后, 选择合适的热处理工艺来进一步提高复合材料的力学性能。

 

关键词:  (Al63Cu25Fe12)p/ZL101复合材料; 准晶; 热处理; 挤压铸造

 

引用格式:  TIAN Jin-zhong, ZHAO Yu-hong, ZHANG Feng-hao, et al. An investigation on mechanical properties of (Al63Cu25Fe12)p/ZL101 composites by squeeze casting. Journal of Measurement Science and Instrumentation, 2018, 9(1): 78-83. [doi:10.3969/j.issn.1674-8042.2018.01.011]


[full text view]