此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Acoustic multipolar local effects of metamaterial with annular columnar structures



HAN Jian-ning1,2,3, ZHEN Wen-xiang1,2,3, QIN Jia-jie1,2,3, WU Yu-peng1,2,3, TANG Shuai1,2,3



(1. Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China;2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;3. School of Science, North University of China, Taiyuan 030051, China)



Abstract: Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science, military industry and biomedicine. In this paper, the metamaterial is designed by annular columnar structures. The acoustic local effect in slender columnar structure with two layers of rings in air is investigated. Results prove that when the plane acoustic wave is incident into the model, complex interference and diffraction occur. And at different frequencies, multipolar acoustic local effect existes and cycle distribution phenomenon is observed. It is noteworthy that this phenomenon has very weak relatedness with the materials and acoustic parameters of the model. The research of this metamaterial design in this paper has definite reference significance in the acoustic communication and amplification of the acoustic signal detection.



Key words: acoustic multipolar; acoustic local effects; acoustic metamaterial; slender columnar



CLD number: O426.4 Document code: A



Article ID: 1674-8042(2017)04-0307-07  doi: 10.3969/j.issn.1674-8042-2017-04-001




References



[1]Zigoneanu L, Popa B I, Cummer S A. Design and measurements of a broadband two-dimensional acoustic lens. Physical Review B, 2011, 84(2): 3214-3219.

[2]LI Yong, LIANG Bin, TAO Xu, et al. Acoustic focusing by coiling up space. Applied Physics Letters, 2012, 101(23): 233508.

[3]Romero-Garcia V, Cebrecos A, Pico R, et al. Wave focusing using symmetry matching in axisymmetric acoustic gradient index lenses. Applied Physics Letters, 2013, 103(26): 264106.

[4]Wang W, Xie Y, Konneker A, et al. Design and demonstration of broadband thin planar diffractive acoustic lenses. Applied Physics Letters, 2014, 105(10): 101904.

[5]Molerón M, Serragarcia M, Daraio C. Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 2014, 105(11): 104103.

[6]TIAN Ye, WEI Qi, CHENG Ying, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface. Applied Physics Letters, 2015, 107(22): 221906.

[7]ZHANG Shu, YIN Lei-lei, FANG Nicholas. Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 2009, 102(19): 194301.

[8]YUAN Bao-guo, CHENG Ying, LIU Xiao-jun. Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure. Applied Physics Express, 2015, 8(2): 027301.

[9]Jahdali R A, Wu Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Applied Physics Letters, 2016, 108(3): 82-149.

[10]Sato M, Matsuo T, Fujii T. Redshift of acoustic waves in acoustic streaming. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(1/2): 016301.

[11]Climente A, Torrent D, Sánchezdehesa J. Sound focusing by gradient index sonic lenses. Applied Physics Letters, 2010, 97(10): 5325.

[12]Martin T P, Nicholas M, Orris G J, et al. Sonic gradient index lens for aqueous applications. Applied Physics Letters, 2010, 97(11): 023902.

[13]PENG Sha-sha, HE Zhao-jian, JIA Han, et al. Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Applied Physics Letters, 2010, 96(26): 1035.

[14]Martin T P, Layman C N, Moore K M, et al. Elastic shells with high-contrast material properties as acoustic metamaterial components. Physical Review B Condensed Matter, 2012, 85(16): 1279-1284.

[15]ZHOU Xiao-ming, HU Geng-kai. Acoustic wave transparency for a multilayered sphere with acoustic metamaterials. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007, 75(2): 046606.

[16]LU Jiu-yang, QIU Chun-yin, KE Man-zhu, et al. Valley vortex states in sonic crystals. Physical Review Letters, 2016, 116(9): 093901

[17]GAO He, GU Zhong-ming, LIANG Bin, et al. Acoustic focusing by symmetrical self-bending beams with phase modulations. Applied Physics Letters, 2016, 108(7): 055002.

[18]XIA Jian-ping, SUN Hong-xiang. Acoustic focusing by metal circular ring structure. Applied Physics Letters, 2015, 106(6): 341.

[19]XIA Jian-ping, SUN Hong-xiang, YUAN Shou-qi, et al. Extraordinary acoustic transmission based on source pattern enhancement and reconstruction by metal cylinder structure. Applied Physics Express, 2015, 8(10): 104301.

[20]XIA Jian-ping, SUN Hong-xiang, CHENG Qian, et al. Theoretical and experimental verification of acoustic focusing in metal cylinder structure. Applied Physics Express, 2016, 9(5): 057301.

[21]GE Yong, SUN Hong-xiang, LIU Chen, et al. Acoustic focusing by an array of heat sources in air. Applied Physics Express, 2016, 9(6): 066701.

[22]Mason W P. The propagation characteristics of sound tubes and acoustic filters. Physical Review, 1928, 31(2): 283-295.

[23]SUN Hong-xiang, ZHANG Shu-yi, SHUI Xiu-ji. A tunable acoustic diode made by a metal plate with periodical structure. Applied Physics Letters, 2012, 100(10): 104301.

[24]SUN Hong-xiang, ZHANG Shu-yi. Enhancement of asy-mmetric acoustic transmission. Applied Physics Letters, 2013, 102(11): 013904.

[25]Amin M R, Morfill G E, Shukla P K. Modulational instability of dust-acoustic and dust-ion-acoustic waves. Physical Review E, 1998, 58(5): 6517.

[26]Chang H K, Chou D Y, Sun M T. In search of emerging magnetic flux underneath the solar surface with acoustic imaging. Astrophysical Journal, 1999, 526(1): L53.



圆柱形体形成的环状结构超材料中声学多极点效应



韩建宁1,2,3,  甄文祥1,2,3, 秦佳杰1,2,3, 吴煜鹏1,2,3, 唐帅1,2,3



(1. 中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051;2. 中北大学 信息与通信工程学院, 山西 太原 030051; 3. 中北大学 理学院, 山西 太原 030051)



摘要:基于超材料的声场局域的研究广泛应用在环境科学领域, 军事工业和生物医学领域。 本文的声学超材料是由很多圆柱状结构的设计构成。 本文主要研究了在空气中细长柱形成的两层环状的声场局域现象。 研究结果证明, 当平面声波入射到模型中时, 内部会发生比较复杂的干涉和衍射。 而在不同频率下, 出现了多极的声场局域现象, 同时也出现了周期分布。 值得注意的是, 这种现象发生与超材料模型中的材料和声学参数相关性非常弱。 本文的超材料设计对水声通信和水声信号检测的放大研究有一定的参考意义。



关键词:声学多极点; 声场局域效应; 声学超材料; 细长圆柱形



引用格式:HAN Jian-ning, ZHEN Wen-xiang, QIN Jia-Jie, et al. Acoustic multipolar local effects of metamaterial with annular columnar structures. Journal of Measurement Science and Instrumentation, 2017, 8(4): 307-313. [doi: 10.3969/j.issn.1674-8042.2017-04-001]


[full text view]




 

  • 附件【jmsi2017-4-307.pdf】已下载