ZHANG Hai-tao1,2, LIU Shu-gui1, LI Xing-hua1, SU Zhi-kun1
(1. National Key Laboratory of Precision Testing Techniques and Instrument, Tianjin University, Tianjin 300072, China; 2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
Abstract: A cantilever coordinate measuring machine (CCMM) is proposed according to the in-situ measurement requirement of workpieces with complex structures limited by the finite space of the 5-axes computerized numerical control (CNC) processing site. Factors affecting uncertainty of measurement(UM) are classified and analyzed on the basis of uncertainty evaluation criteria, and the estimation technique of UM for measuring systems is presented. UM of the CCMM is estimated from the factors such as temperature, error motions as well as the mechanism deformations. Measurement results show that the actual measurement error is smaller than that of measurement requirement.
Key words: cantilever coordinate measuring machine (CCMM); structure design; computerized numerical control machine; estimation of uncertainty of measurement
CLD number: TH721 Document code: A
Article ID: 1674-8042(2017)04-0314-07 doi: 10.3969/j.issn.1674-8042-2017-04-002
References
[1]ZHANG Guo-xiong. Coordinate measuring machine. Tianjin: Tianjin University Press, 1999.
[2]Hocken R J, Pereira P H. Coordinate measuring machines and systems. Boca Raton: CRC Press, 2012.
[3]Zhang G X, Guo J B, Liu S G, et al. The development of cylindrical coordinate measuring machines. Measurement Science and Technology, 2010, 21(5): 54003-54009.
[4]YU Yong-xin, ZHANG Heng, WANG Zong-chao, et al. Deep-hole inner diameter measuring system based on non-contact capacitance sensor. Transactions of Tianjin University, 2010, 16(6): 447-451.
[5]FEI Ye-tai. Error theory and data processing. Beijing: China Machine Press, 2004.
[6]Waldele F, Schwenke H. Automated calculation of measurement uncertainties on CMMs-towards industrial application. Technisches Messen, 2002, 69(12): 550-557.
[7]Raya F J, Cuesta E, Marti'nez-Pellitero S, et al. Uncertainties on CMMs by applying a model of corrections based on a global metric, monte carlo and neural network methods. Procedia Engineering, 2015, 132: 796-803.
[8]ZHAO Lei, GONG Yan. Rotation precision analysis of corner-filleted flexure hinge. China Mechanical Engineering, 2013, 24(6): 715-720.
[9]LIU Shu-gui, ZHANG Hai-tao, SU Zhi-kun. A Study on the correction of detecting vector of REVO applied in the non-orthogonal coordinate measuring machine. Journal of Tianjin University (Science and Technology), 2016, 49(9): 956-960.
[10]LI Xing-hua, ZHANG Guo-xiong, LIU Shu-gui, et al. A study on machine calibration techniques. CIRP Annals-Manufacturing Technology, 2013, 62(1): 499-502.
[11]QIU Zu-rong, SU Zhi-kun, ZHANG Guo-xiong, et al. Key technology for calibrating parameters of a bladed disk measuring machine. Nanotechnology and Precision Engineering, 2014, 12(4): 235-241.
悬臂式测量机测量不确定度分析与验证
张海涛1,2, 刘书桂1, 李杏华1, 苏智琨1
(1. 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072; 2. 天津大学 机械工程学院, 天津 300072)
摘要:针对在某五轴数控机床加工现场有限空间限制下, 复杂结构工件的原位在线测量问题, 设计了一种悬臂式坐标测量机。 根据不确定度评定准则, 分析了影响测量机测量不确定度的因素, 提出了从理论上估计所设计结构形式测量机测量不确定度的方法, 并从机构运动误差、 机构变形以及温度等方面对测量机的测量不确定度进行了估计。 实验结果显示, 测量机的测量误差均小于测量指标所要求的测量不确定度。
关键词:悬臂式坐标测量机; 结构设计; 数控机床; 不确定度估计
引用格式:ZHANG Hai-tao, LIU Shu-gui, LI Xing-hua, et al. Theoretical analysis and verification of uncertainty of measurement on a cantilever coordinate measuring machine. Journal of Measurement Science and Instrumentation, 2017, 8(4): 314-320. [doi: 10.3969/j.issn.1674-8042.2017-04-002]
[full text view]