YU Zhi-guo1,2, SUN Yi-zhou1,2, HUANG Pu1,2, HE Qin1,2, GU Xiao-feng1,2
(1. Engineering Research Center of IoT Technology Applications (Ministry of Education), Wuxi 214122, China;2. Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China)
Abstract: In the practical measurement of signal to noise ratio (SNR) of analog-to-digital converters (ADCs) by using fast Fourier transformation (FFT) method, the non-coherent sampling is inevitable, leading to spectral leakage which in turn affects the calculation accuracy and final measurement results. In this paper, a new method based on the Blackman-Harris windowed triple-spectrum-line interpolation is presented for the measurement of ADCs SNR by FFT. The simulation platform is built based on MATLAB and the behavioral dynamic models of the high-speed ADC products of Analog Devices Inc. (ADI) are simulated. The simulation results show that, even in the case of the maximum non-coherent degree, the SNR error is less than 0.23 dB and reaches the testing standards provided by ADI, confirming that the proposed method is effective for suppressing the spectral leakage effects and improving the SNR test accuracy.
Key words: Blackman-Harris windowed; signal to noise ratio (SNR); triple-spectrum-line interpolation; spectral leakage; non-coherent sampling
CLD number: TN47 Document code: A
Article ID: 1674-8042(2017)04-0321-07 doi: 10.3969/j.issn.1674-8042-2017-04-003
References
[1]Grace C R, Denes P, Gnani D, et al. Radiation-tolerant code-density calibration of nyquist-rate analog-to-digital converters. IEEE Transactions on Nuclear Science, 2013, 60(2): 1303-1310.
[2]Rapuano S. Preliminary considerations on ADC standard harmonization. IEEE Transactions on Instrumentation and Measurement, 2008, 57(2): 386-394.
[3]DUAN Yan, CHEN Tao, CHEN De-gang. Low-cost dit-hering generator for accurate ADC linearity test. IEEE International Symposium on Circuits and Systems, 2016: 1474-1477.
[4]KE Xin-hua, LU Song-lin, XU Rui-nan, et al. A practical method to test high-resolution ADC. Nuclear Techniques, 2008, 31(5): 3974-3978.
[5]DUAN Jing-bo, JIN Le, CHEN De-gang. Testing ADC spectral performance without dedicated data acquisition. IEEE Transactions on Instrumentation and Measurement, 2012, 61(11): 2941-2951.
[6] Meng S O, Ye C K, Poon S L, et al. Multisine with optimal phase-plane uniformity for ADC testing. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 566-578.
[7]ZHOU Juan, JIANG Deng-feng. Automatic test system development for ADC based on matlab. Journal of China Jiliang University, 2008, 19(3): 219-224.
[8]DAI Lan, JIANG Yan-feng, LIU Wen-kai. Testing research based on Matlab for high-speed and high-resolution ADC. Computer Measurement and Control, 2001, 18(9): 2044-2049.
[9]WU Min-shun, LIU Zhi-qiang. Non coherency correction algorithm for removing spectral leakage in ADC spectral test. IEICE Electronics Express, 2016, 13(2): 1-11.
[10]WANG Nan, HUANG Cheng, WU Jian-hui. An autom-ated digital testing system for high-Resolution ADC based on the feedback loop method using low-resolution DAC signal. In: Proceedings of 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modeling and Testing Research on Electrical and Electronic Measurement for the Economic Upturn, Benevento, Italy, 2014, 9: 15-17.
[11]Carbone P, Nunzi E, Petri D. Windows for ADC dynamic testing via frequency-domain analysis. IEEE Transactions on Instrumentation and Measurement, 2001, 50(6): 1571-1576.
[12]HUANG Shen-xi, FAN Xiao-ping, LIU Shao-qiang, et al. A new method to evaluate the high-speed the high-speed ADC frequency-domain characteristics. Information and Control, 2009, 38(1): 43-48.
[13]IEEE Std 1241-2000. Methods and draft standards for the dynamic characterization and testing of analogue to digital converters V3.3. [2017-01-09]. httpL∥standardsieee.org/findstds/standard/1241-2000.html.
[14]IEEE Std 1057-1994. IEEE Standard for Digitizing Waveform Recorders. [2017-03-21]. http:∥standards.ieee.org/findstds/standard/1057-1994.html.
[15]ADI. AD9460 16-Bit, 80 MSPS/105 MSPS ADC. Norw-ood: ADI Inc., 2006.
[16]ADI. AD9254 14-Bit, 150 MSPS, 1.8V, Analog-to-Digital Converter. Norwood: ADI Inc., 2006.
基于Blackman-Harris窗三谱线插值测试ADC信噪比的方法
虞致国1,2, 孙益洲1,2, 黄朴1,2, 何芹1,2, 顾晓峰1,2
(1. 物联网技术应用教育部工程研究中心, 江苏 无锡 214122; 2. 江南大学 电子工程系, 江苏 无锡 214122)
摘要:利用快速傅里叶变换(FFT)测试模数转换器(ADC)的信噪比(SNR)必然存在非相干采样, 导致测量结果会受频谱泄漏的影响。 针对此问题, 提出了一种利用Blackman-Harris窗三谱线插值测试高速ADC SNR的方法。 基于MATLAB构建了验证平台, 采用美国模拟器件公司(ADI)的AD9627等高速ADC产品的行为级动态模型进行了仿真验证。 结果表明, 在非相干程度最大的情况下, 基于Blackman-Harris窗三谱线插值测试得到的SNR误差低于0.23 dB, 达到了ADI公司提供的测试标准, 证明该法能很好地抑制频谱泄漏的影响, 提高SNR测试精度。
关键词:Blackman-Harris窗; 信噪比; 加窗插值; 频谱泄漏; 非相干采样
引用格式:YU Zhi-guo, SUN Yi-zhou, HUANG Pu, et al. A Blackman-Harris windowed triple-spectrum-line interpolation method for measuring SNR of ADCs. Journal of Measurement Science and Instrumentation, 2017, 8(4): 321-327. [doi: 10.3969/j.issn.1674-8042.2017-04-003]
[full text view]