HAO Xiao-jun1, LEI Ying-chun2, HOU Hua1, ZHAO Yu-hong1, WANG Yi-du1
(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 2. Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China)
Abstract: According to dynamics of coupled galvanic anode with carbon steel, the integral of galvanic current vs. time is approximately equal to actual current capacity of galvanic anode. Galvanic current of cast aluminum galvanic anode coupled with carbon steel is tested in 3.5% NaCl solution and ambient temperature. Rapid evaluation the performance of galvanic anode using galvanic current is feasible, and the test time is 20 min. The galvanic current is used to select aluminum galvanic anodes in oil brine, and then test the galvanic anodes with impressed current test method. The result shows, the performance of galvanic anodes degrads in oil brine, but has not much difference in the two media to the preferable anodes, and the optimal galvanic anode is gained.
Key words: quick selection; aluminum galvanic anode; galvanic current; oil brine
CLD number: TG174.4 Document code: A
Article ID: 1674-8042(2017)04-0334-06 doi: 10.3969/j.issn.1674-8042-2017-04-005
References
[1]Lemieux E J, Hartt W H, Lucas K E. A critical review of aluminum anode activation, dissolution mechanisms, and performance. In: Corrosion, Houston, TX: NACE, 2001.
[2]Schrieber C F, Reding J T. Field testing a new aluminum anode Al-Hg-Zn galvanic anode for sea water applications. Materials Protection, 1967, 6(5): 33-36.
[3]Schrieber C F, Muray R W. Effect of hostile marine environments on the Al-Zn-In-Si sacrificial anode.Materials Protection, 1988, 28(7): 70-77.
[4]Murray J N. The role of modifying elements on the behavior of indium activated, aluminum/zinc alloy sacrificial anodes. In: Corrosion, Houston, TX: NACE, 2001.
[5]Murray J N. A proposed 24-hour QA/QC test method for indium activated aluminum alloys. In: Corrosion, Houston, TX: NACE, 2002.
[6]Smith S N, Reding J T, Riley R L, et al. Development broad application saline water aluminum anode—Galvalum III. Materials Performance, 1978, 17(3): 30-39.
[7]LI Yi. Aluminum sacrificial anode for oil-carrying pipeline in seabed mud. Materials Protection, 2002, 35(5): 25-26.
[8]Bessone J B, Suarez-Baldo R A, De Michel S M. Sea water testing of Al-Zn, Al-Zn-Sn, and Al-Zn-In sacrificial anodes.Corrosion, 1981, 37(9): 533-540.
[9]MA Jing-ling, WEN Jiu-ba, LI Geng-xin, et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution.Corrosion Science, 2010, 52 (2): 534-539.
[10]MA Jing-ling, WEN Jiu-ba. Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy. Journal of Alloys & Compounds, 2010, 496(1/2): 110-115.
[11]HE Jun-guang, WEN Jiu-ba, LI Xu-dong. Effects of precipitates on the electrochemical performance of Al sacrificial anode.Corrosion Science, 2011, 53(5): 1948-1953.
[12]HE Jun-guang, WEN Jiu-ba, LI Xu-dong, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1580-1586.
[13]Orozco R, Genesca J, Juarez-Islas J. Effect of Mg content on the performance of Al-Zn-Mg sacrificial anodes. Journal of Materials Engineering and Performance, 2007, 16(2): 229-235.
[14]Talavera M A, Valdez S, Juarez-Islas J A, et al. EIS testing of new aluminium sacrificial anodes. Journal of Applied Electrochemistry, 2002, 32(8): 897-903.
[15]Rossi S, Bonora P L, Pasinetti R, et al. Laboratory and field characterization of a new sacrificial anode for cathodic protection of offshore structures. Corrosion, 1998, 54(12): 1018-1025.
[16]Salinas D R, Bessone J B. Electrochemical behavior of Al-5%Zn-0.1%Zn sacrificial anode in aggressive media: influence of its alloying elements and the solidification structure. Corrosion, 1991, 47(9): 665-674.
[17]Talavera M A, Valdez S, Juarez-Islas J, et al. Development and testing of aluminum sacrificial anodes in Hg free. In: Corrosion, Houston, TX: NACE, 2001.
[18]Lemieux E, Lucas K E, Hogan E A, et al. Performance evaluation of low voltage anodes for cathodic protection. In: Corrosion. Houston, TX: NACE, 2001.
[19]Luoyang Ship Material Research Institute. GB/T 17848-1999 Test methods for electrochemical properties of sacrificial anode. Beijing: State Bureau of Quality and Technical Supervision, 1999.
[20]ASTM. TM0190-2006 Impressed current test method for laboratory testing of aluminum anodes. Houston: NACE International, 2006.
[21]Norwegian Technology Standards Institution. NORSOK standard DNV-RP-B401 cathodic protection design. Oslo: Norwegian Technology Standards Institution, 2010.
[22]Revie R W. Uhligs corrosion handbook, the ECS series of texts and monographs. 3rd edition. New York: John Wiley & Sons, New Jersey, 2011.
电偶电流快速筛选应用于含油盐水中铝合金牺牲阳极的研究
郝小军1, 雷英春2, 侯华1, 赵宇宏1, 王一都1
(1. 中北大学 材料学院, 山西 太原 030051; 2. 太原工业学院 环境与安全工程系, 山西 太原 030008)
摘要:依据牺牲阳极与碳钢偶合后的电极动力学, 电偶电流的时间积分电量值为牺牲阳极实际发出电流量。 通过测试铸造铝合金牺牲阳极和碳钢在3.5% NaCl溶液中偶合后的电偶电流Ig, 表明用电偶电流快速评价铸态铝合金牺牲阳极性能的方法可行, 测试时间为20 min。 采用电偶电流快速筛选含油盐水中铝合金牺牲阳极, 对其中较好配方参照外加电流法进行测试。 结果表明, 在含油盐水中, 牺牲阳极性能下降, 性能较好的牺牲阳极在两种介质中性能相差不大, 并筛选出最佳阳极。
关键词:快速筛选; 铝合金牺牲阳极; 电偶电流; 含油盐水
引用格式:HAO Xiao-jun, LEI Ying-chun, HOU Hua, et al. Quick selection of aluminum galvanic anodes in oil brine via galvanic current. Journal of Measurement Science and Instrumentation, 2017, 8(4): 334-339. [doi: 10.3969/j.issn.1674-8042.2017-04-005]
[full text full]