此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Vector control of permanent magnet synchronous motor based on dynamic matrix control



WANG Rui-min1, ZHU Qi-xian2, DONG Hai-ying3



(1. School of Automatic & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. State Key Laboratory of Large Electric Transmission Systems and Equipment Technology, Tianshui Electric Drive Research Institute Company, Tianshui 741020, China;3. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)



Abstract: Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor (PMSM) oil rig, this paper presents a predictive control method based on dynamic matrix model. In this method, the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control. And its control effect is compared with the traditional proportional integral (PI) control of the motor. By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods, it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method. And the feasibility of new control in the application of PMSM oil rig is verified.



Key words: permanent magnet synchronous motor (PMSM); predictive control; dynamic matrix; speed loop



CLD number: TP273 Document code: A



Article ID: 1674-8042(2017)04-0340-07  doi: 10.3969/j.issn.1674-8042-2017-04-006



References



[1]SUN Qing-qun. Introduction to oil production and drilling machinery. Beijing: China Petrochemical Press, 2011. 

[2]TIAN Shu-gui. The summary of home-made electrical dr-ive control system of oil-drilling rig. Electric Drive Automation, 1999, (3): 3-6.

[3]Duan Y, Ionel D M. A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Transactions on Industry Applications, 2011, 49(3): 1268-1275.

[4]Kim H J, Kim D Y, Hong J P. Structure of concentrated-flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.

[5]GENG Jie, CHEN Zhen, LIU Xiang-dong, et al. Adaptive inverse control of permanent magnet synchronous motor. Transactions of China Electrotechnical Society, 2011, 26(6): 51-55.

[6]YAN Yan, LIU Rui, SHI Ting-na, et al. Friction compensation for permanent magnet synchronous motors based on adaptive back-stepping control. Proceedings of the Chinese Society for Electrical Engineering, 2013, 33(33): 76-84.

[7]Morawiec M. The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1047-1055.

[8]LI Zheng, HU Guang-da, CUI Jia-rui, et al. Sliding-mode variable structure control with integral action for permanent magnet synchronous motor. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(3): 431-437.

[9]ZHAO Xi-mei, ZHAO Jiu-wei. Complementary sliding mode variable structure control for permanent magnet linear synchronous motor. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(10): 2552-2557.

[10]DANG Xuan-ju, XU Xiao-ping, YU Xiao-ming, et al. Control for PMLSM based on wavelet neural network. Electric Machines and Control, 2013, 17(1): 43-50.

[11]El-Sousy F F M. Intelligent optimal recurrent wavelet Elman neural network control system for permanent-magnet synchronous motor servo drive. IEEE Transactions on Industrial Informatics, 2013, 9(4): 1986-2003.

[12]Wang Y, Boyd S. Fast model predictive control using online optimization. IEEE Transactions on Control Systems Technology, 2010, 18(2): 267-278.

[13]XI Yu-geng, LI De-wei, LIN Shu. Model predictive control-status and challenges. ACTA Automatica Sinica, 2013, 39(3): 222-236.

[14]ZHANG Wei, WANG Xin, WANG Zhen-lei. Challenges economic performance assessment of multivariable MPC based on evidential network. Journal of Chemical Industry and Engineering (China), 2012, 63(11): 3585-3590.

[15]ZHENG Ze-dong, WANG Kui, LI Yong-dong, et al. Current controller for AC motors using model predictive control. Transactions of China Electrotechnical Society, 2013, 28(11): 118-123.

[16]LI Shi-qing, DING Bao-cang. An overall solution to double-layered model predictive control based on dynamic matrix control. ACTA Automatica Sinica, 2015, 41(11): 1857-1866.



基于动态矩阵控制的永磁同步电机矢量控制



王睿敏1, 朱奇先2, 董海鹰3



(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070;2. 天水电气传动研究所有限责任公司 大型电气传动系统与装备技术国家重点实验室, 甘肃 天水 741020;3. 兰州交通大学 新能源与动力工程学院, 甘肃 兰州 730070)



摘要:针对强非线性、强耦合永磁同步电机石油钻机的控制问题,本文提出了一种动态矩阵模型预测控制的方法。该方法将采用多步预估技术的动态矩阵算法应用于永磁同步电机矢量控制的速度环控制中,并将其控制效果与传统的永磁同步电机PI控制进行仿真对比。通过对两种方法的初始动态响应以及负载干扰下的稳态恢复进行对比,表明与传统的永磁同步电机PI控制相比,本文所提出的动态矩阵模型预测控制的永磁同步电机的动态响应效果更好,系统的鲁棒性更强,验证了新方法在永磁同步电机石油钻机中应用的可行性。



关键词:永磁同步电机;预测控制;动态矩阵;速度环



引用格式:WANG Rui-min, ZHU Qi-xian, DONG Hai-ying. Vector control of permanent magnet synchronous motor based on dynamic matrix control. Journal of Measurement Science and Instrumentation, 2017, 8(4): 340-346. [doi: 10.3969/j.issn.1674-8042.2017-04-006]



[full text view]