此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Near-far effect mitigation method using pseudolite signal acquisition

WANG Di1,2, CHEN Guang-wu1,2, LIU She-de1,2

 

(1. Automatic Control Institute, Lanzhou Jiaotong University,  Lanzhou 730070, China; 2. Gansu Provincial Key Laboratory of Traffic Information Engineering and Control, Lanzhou 730070, China)

 

Abstract: In this paper, a new idea based on pseudolite signal acquisition method aiming to mitigate the near-far effect problem in the satellite positioning is proposed. After analyzing the signal capture principle based on coherent integration and non-coherent accumulation, the cross-correlation interference of strong and weak signals is eliminated by means of normalization of reconstructed strong signal and judgement of the characteristics of the peak value, which can avoid the near-far effect of the pseudolite signal. It can also estimate all the strong signals without any additional hardware. By building an indoor pseudolite positioning system, the capture performance becomes better based on improved acquisition algorithm compared with that based on the non-coherent accumulation after coherent integration algorithm. The near-far effect is restrained effectively and the probability of weak signal detection is increased by 25%.

 

Key words: Pseudolite; near-far effect; coherent integral; kurtosis

 

CLD number: TN967Document code: A

 

Article ID: 1674-8042(2017)03-0228-10  doi: 10.3969/j.issn.1674-80422017-03-004

 


References

 

[1]WANG Hui-hui, ZHAI Chuan-run, ZHAN Xing-qun, et al. Outdoor navigation system using integrated GPS and pseudo satellite signals: theoretical analysis and simulation. In: Proceedings of IEEE International Conference on Information and Automation,  2008: 1127-1131.
[2]Glennon E P, Dempster A G. Cross correlation mitigation techniques for software GPS C/A code receivers.In: Proceedings of  Internaltinal Global Navigation Satellite System Society 2007 Symposium on GPS/GNSS, 2007.
[3]LI Jian-sheng, LIU Tao-hu, HUANG Zhi-gang. A solution of the near-far effect based on the orthogonality of peeudolite signal. Journal of Electronics & Information Technology, 2010, 32(6): 1366-1369.
[4]SHEN Li-bin, LI Xin, ZHANG Hui-sheng, et al. A near-far effect mitigation method of pseudo satellites based on array signal. In: Proceedings of China Satellite Navigation Conference,   Springer Berlin Heidelberg, 2015, 1: 647-656.
[5]Picois A V, Samama N. Near-far interference mitigation for pseudo satellites using double transmission. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2929-2941.
[6]Yun J M, Kim S B, Lee J M. Robust positioning a mobile robot with active beacon sensors. In: Proceedings of International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Springer Berlin Heidelberg, 2006: 890-897.
[7]HU Hui, YYUAN Yuan, LU Chun. GPS signal differential coherent accumulation acquisition technique. Journal of Harbin University of Science and Technology, 2012,  17(6): 36-40.
[8]Armstrong J, Sekercioglu Y A, Neild A. Visible light positioning: a roadmap for international standardization. IEEE Communications Magazine, 2013, 51(12): 68-73.
[9]ZHU Zhen, van Graas F. Implications of C/A code cross correlation on GPS and GBAS. In: Proceedings of 2014 IEEE/ION Position, Location and Navigation Symposium, 2014: 282-293.
[10]Lopez-Gordo M A, Pelayo F, Fernandez E, et al. Phase-shift keying of EEG signals: Application to detect attention in multitalker scenarios. Signal Processing, 2015, 117: 165-173.
[11]Van Dierendonck A J, Erlandson R, McGraw G, et al. Determination of C/A code self-interference using cross-correlation simulations and receiver bench tests. In: Proceedings of ION GPS 2002: 15th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 630-642.
[12]Borsadiya K, Anusha S, Doshi G J. An efficient way of multirate asynchronous data transfer in MicroBlaze processor for GNSS receiver. In: Proceedings of IEEE 2015International Conference on Signal Processing and Communication Engineering Systems,  2015: 118-121.
[13]Parmar S N, Nainan S, Bakade K, et al. An efficient mobile GPS navigator, tracker and altimeter system for location based services. In: Proceedings of  IEEE 2013 International Conference on Advances in Technology and Engineering, 2013: 1-4.
[14]LIU Yang-yang, LIAN Bao-wang, ZHAO Hong-wei, et al. Relative localization algorithm for indoor pseudo satellite based on Kalman filter. Physics, 2014, 63(22): 228402.
[15]Kuusniemi H, Bhuiyan M Z H, Strm M, et al. Utilizing pulsed pseudo satellites and high-sensitivity GNSS for ubiquitous outdoor/indoor satellite navigation. In: Proceedings of  IEEE 2012 International Conference on Indoor Positioning and Indoor Navigation, 2012: 1-7.
[16]Gioia C, Borio D. Stand-alone and hybrid positioning using asynchronous pseudo satellites. Sensors, 2014, 15(1): 166-193.
[17]Kim H Y. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 2013, 38(1): 52-54.
[18]LIU Hui, WANG Huang, WANG She, et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection. Signal Processing, 2014, 96: 118-124.
[19]Guo W, Peter W T, Djordjevich A. Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition. Measurement, 2012, 45(5): 1308-1322.
[20]Grejner-Brzezinska D A, Yi Y. Experimental GPS/INS/Pseudolite system for kinematic positioning. Survey Review, 2013, 37(288): 113-126.
[21]Borio D, Gioia C. Improved pseudo satellite navigation using C/N 0 measurements. In: Proceedings of  IEEE 2014 22nd European Signal Processing Conference, 2014: 1517-1521.
[22]Song Q, Zhang B, Li S. Study of configuration technology of ground pseudo satellite. Computer Measurement & Control, 2013, 21(3): 743-746.
[23]Namie H, Nakagawa M. Development of indoor positioning system by using the infrared rays data communication tags for pedestrian navigation. IEEE Transactions on Electronics, Information and Systems, 2013, 133(4): 713-721.
[24]LIU Cheng, SHI Hu-li, WANG Zhao-rui, et al. An enhanced satellite positioning algorithm based on generalized interpolation method of receiver clock error. Journal of Astronautics, 2013, 34(2): 186-192.
[25]Kim C, So H, Lee T, et al. A pseudo satellite-based positioning system for legacy gnss receivers. Sensors, 2014, 14(4): 6104-6123.
[26]Ahmed R E, Rowitch D N. Method for performing consistency checks for multiple signals received from a trasnmitter: US Patent Application 20140009333. 2013-9-5.
[27]Rusu-Casandra A, Lohan E S. Contributions to the characterization of the indoor gps propagation channel. In: Proceedings of International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & Mining Ecology Management, 2013, 1: 363.
[28]Ciganer A, Janky J M. Cellular telephone using pseudo satellites for determining location: US Patent 6564064. 2003-5-13.
[29]Gioia C, Borio D. Stand-alone and hybrid positioning using asynchronous pseudo satellites. Sensors, 2014, 15(1): 166-193.

 

基于伪卫星信号捕获原理的抗远近效应方法研究

 

王迪1,2, 陈光武1,2, 刘射德1,2

 

(1. 兰州交通大学 自动控制研究所, 甘肃 兰州 730070; 2. 甘肃省高原交通信息工程及控制重点实验室, 甘肃 兰州 730070)

 

摘要:针对导航领域中伪卫星定位存在的远近效应问题,  提出一种基于伪卫星信号捕获原理的抗远近效应新方法。 在对信号相干积分非相干累加捕获原理分析的基础上,  通过重建强信号的归一化以及弱信号峰度特征值的判断来消除强弱信号的互相关干扰,  实现伪卫星信号远近效应的消除。  该方法可以一次对所有强信号进行估计,  不需要另外增加硬件资源。 通过搭建室内伪卫星定位系统及仿真可知, 与相干积分非相干累加算法相比, 其捕获性能更优, 远近效应得到了有效的抑制,  弱信号检测概率提高了25%。

 

关键词:伪卫星; 远近效应; 相干积分; 峰度

 

引用格式:WANG Di, CHEN Guang-wu, LIU She-de. Near-far effect mitigation method using pseudolite signal acquisition. Journal of Measurement Science and Instrumentation, 2017, 8(3): 228-237. [doi: 10.3969/j.issn.1674-8042.2017-03-04]


 

    [full text view]

 

 

  • 附件【jmsi2017-3-228.pdf】已下载