ZHANG Xiao-dong, WU Bin, YANG Zhi-yuan
(State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China)
Abstract: Aiming at the problem that it is difficult to locate all the aperture positions of the large size component using Hough circle detection method, this article presents a non-contact measurement method combining the integral imaging technology with Hough circle detection algorithm. Firstly, a set of integral imaging information acquisition algorithms were proposed according to the classical imaging theory. Secondly, the camera array experiment device was built by using two-dimensional translation stage and charge coupled device(CCD) camera. When the system is operating, element image array captured with the camera is used to achieve the positioning of the component aperture using Hough circle detection and coordinate acquisition algorithm. Based on the above theory, a verification experiment was carried out. The results show that the detection error of the component aperture position is within 0.3 mm, which provides effective theoretical support for the application of integral imaging technology in high precision detection.
Key words: integral imaging; camera array; Hough transformation; circle detection; component aperture
CLD number: TH741Document code: A
Article ID: 1674-8042(2017)03-0238-06 doi: 10.3969/j.issn.1674-8042201703005
References
[1]PIAO Yong-ri, XING Lu-yan, ZHANG Miao, et al. Three-dimensional reconstruction of far and large objects using synthetic aperture integral imaging. Optics and Lasers in Engineering, 2017, 88: 153-161.
[2]Mukhopadhyay P, Chaudhuri B B. A survey of Hough transform. Pattern Recognition, 2015, 48(3): 993-1010.
[3]LI D, Cheung C F, Ren M, et al. Autostereoscopy-based three-dimensional on-machine measuring system for micro-structured surfaces. Optics express, 2014, 22(21): 25635-25650.
[4]Frauel Y, Javidi B. Digital three-dimensional image correlation by use of computer-reconstructed integral imaging. Applied Optics, 2002, 41(26): 5488-5496.
[5]ZHANG Lei, ZHOU Li-qiu, ZHAO Xing, et al. Self-screening of the corresponding points in integral imaging. Journal of Optoelectronics Laser, 2015, 26(2): 387-391.
[6]Hong S H, Jang J S, Javidi B. Three-dimensional volumetric object reconstruction using computational integral imaging. Optics Express, 2004, 12(3): 483-491.
[7]Manzanera A, Nguyen T P, Xu X. Line and circle detection using dense one-to-one Hough transforms on greyscale images. Eurasip Journal on Image & Video Processing, 2016, 2016(1): 46.
[8]Chen T C, Chung K L. An efficient randomized algorithm for detecting circles. Computer Vision and Image Understanding, 2001, 83(2): 172-191.
[9]LI D, Cheung C F, Ren M J, et al. Disparity pattern-based autostereoscopic 3D metrology system forin situ measurement of microstructured surfaces. Optics Letters, 2015, 40(22): 5271-5274.
[10]YANG Chen, WANG jin-gang, Stern A, et al. Three-dimensional super resolution reconstruction by integral imaging. Journal of Display Technology, 2015, 11(11): 947-952.
[11]WANG Jin-gang, XIAO Xiao, Javidi B.Three-dimensional integral imaging with flexible sensing. Optics Letters,2014, 39(24): 6855-6858.
[12]Shin D H, Yoo H. Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation. Optics Communications, 2009, 282(14): 2760-2767.
基于集成成像技术的零件孔径位置检测
张晓东, 吴斌, 杨志远
(天津大学 精密测试技术与仪器国家重点实验室, 天津 300072)
摘要: 针对利用霍夫圆检测方法很难定位大尺寸零件上所有孔径位置的问题, 本文提出了一种将集成成像技术与霍夫圆检测算法相结合的非接触式测量方法。 首先, 根据经典成像理论提出了一套集成成像信息获取算法。 其次, 利用二维平移台和CCD相机搭建了相机阵列实验装置。 系统工作时, 相机采集的元素图像阵列, 可以通过霍夫圆检测和坐标获取算法来实现零件孔径位置的定位。 基于上述理论进行了验证实验, 结果显示, 零件孔径位置的检测误差在0.3mm以内。 该方法为集成成像技术应用于高精密位置检测提供了有效的理论支持。
关键词: 集成成像; 相机阵列; 霍夫变换; 圆检测; 零件孔径
引用格式: ZHANG Xiao-dong, WU Bin, YANG Zhi-yuan. Position detection of component aperture based on integral imaging technology. Journal of Measurement Science and Instrumentation, 2017, 8(3): 238-243. [doi: 10.3969/j.issn.1674-8042.20170305]
[full text view]