此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

EIS studies the effect of Zinc to Al-Zn alloy used for cathodic protection in 3% NaCl solution


HAO Xiao-jun1, LEI Ying-chun2, HOU Hua1, ZHAO Yu-hong1, WANG Yi-du1

 

(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;2. Dept. of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China)

 

Abstract: Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Zn+ad, Zn2+ad and Al+ad, of which only Zn+ad can activate Al-Zn alloys. Most Zn+ad is produced by β-phase, and the alloys with 2.3%-3.8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activation of Al-Zn alloys.

 

Key words: Al-Zn alloy sacrificial anode; reaction model; electrochemical impendence spectroscopy (EIS); activation mechanism; zinc enrichment phase (β-phase)

 

CLD number: TG174Document code: A

 

Article ID: 1674-8042(2017)02-0110-09   doi: 10.3969/j.issn.1674-8042-2017-02-002

 

References

 

[1]Reding J T, Newport J J. Al alloy. Materials Protection, 1966, 5(12): 15-18.
[2]Schrieber C F, Reding J T. Field testing new aluminum anode. Materials Protection, 1967, 6(5): 33-36.
[3]Reboul M C, Delatte M C. Activation mechanism for sacrificial AI/Zn/Hg anodes. Materials Performance, 1980, 19(5): 35-39.
[4]Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for al anodes. Corrosion, 1984, 40(7): 366-371.
[5]Smith S N, Reding J T, Riley R L, et al. Development broad application saline water aluminum anode—galvalum III. Materials Performance, 1978, 17: 30-39.
[6]Bessone J B, Baldo R A S, De Michel S M. Sea water testing of Al-Zn, Al-Zn-Sn, and Al-Zn-In sacrificial anodes. Corrosion, 1981, 37(9): 533-540.
[7]Ma J L, Wen J B, Li G X, et al. The corrosion behavior of Al-Zn-In-Mg-Ti alloy in NaCl solution. Corrosion Science, 2010, 52: 534-539.
[8] MA Jing-ling, WEN Jiu-ba. Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy. Journal of Alloys and Compounds, 2010, 496(1/2): 110-115.
[9]He J G, Wen J B, Li X D, et al. Effects of precipitates on the electrochemical performance of Al sacrificial anode.Corrosion Science, 2011, 53(5): 1948-1953.
[10] He J G, Wen J B, Li X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes. Transactions of  Nonferrous Metals Society of China, 2011, 21(7): 1580-1586.
[11]Orozco R, Genesca J, Juarez-Islas J. Effect of Mg content on the performance of Al-Zn-Mg sacrificial anodes. Journal of Materials Engineering and Performance, 2007, 16(2): 229-235.
[12]Talavera M A, Valdez S, Juarez-Islas J A, et al. EIS testing of new aluminium sacrificial anodes. Journal of Applied Electrochemistry, 2002, 32(8): 897-903.
[13]BINS 2014 database. Binary-phase diagram for Al-Zn system[2017-02-16]. http://www.crct.polymtl.ca/fact/Documentation/BINARY/Al-Zn.jpg.
[14]Salines D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al-Zn. Journal of Applied Electrochemistry, 1999, 29(9): 1063-1071.
[15]Venugopal A, Raja V S. AC impedance study on the activation mechanism of aluminium by indium and zinc in 3.5% NaCl medium. Corrosion Science, 1997, 39 (12):2053-2065.
[16]Lemieux E, Hartt W H, Lucas K E. A critical review of aluminum anode activation, dissolution mechanisms, and performance, No. 01509. Huston: NACE, 2001.
[17]Hao X J, Lei Y C. EIS study of activation mechanism of zinc in aluminum zinc alloy. In: Proceedings of the 16th International Corrosion Congress, Beijing, 2005.
[18]Cachet C, Ganne F, Maurn G, et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc. Electrochimica Acta, 2001, 47(3): 509-518.

 

电化学阻抗谱研究Zn对用于阴极保护的Al-Zn合金在3% NaCl溶液中溶解行为的影响

 

郝小军1, 雷英春2, 侯华1, 赵宇宏1, 王一都1

 

(1. 中北大学 材料学院, 山西 太原 030051; 2. 太原工业学院 环境与安全工程系, 山西 太原 030008)

 

摘要:采用电化学阻抗谱(EIS)研究了Al-Zn合金在不同极化电位下, 3% NaCl溶液中的溶解行为, 提出了Al-Zn合金在该条件下的活化反应模型及机理。 该活化反应中产生3个中间产物: Zn+ad、 Zn2+ad和Al+ad, 其中只有Zn+ad可以活化Al-Zn合金。 大部分Zn+ad由β相反应产生, Zn含量2.3%-3.8%wt的Al-Zn合金可以快速溶解。 具有心形EIS的Al-Zn合金在该溶液中处于活化状态, 因此采用EIS可以区分Al-Zn合金的活化状态。

 

关键词:Al-Zn合金牺牲阳极; 反应模型; 电化学阻抗谱(EIS); 活化机理; 富锌相(β相)

 

引用格式:HAO Xiao-jun, LEI Ying-chun, HOU Hua, et al. EIS studies the effect of Zinc to Al-Zn alloy used for cathodic protection in 3% NaCl solution. Journal of Measurement Science and Instrumentation, 2017, 8(2): 110-118. [doi: 10.3969/j.issn.1674-8042.2017-02-002]

 

 

[full text view]