BU Zhi-qiang, LU Ruo-peng, HOU Hua, CHENG Peng
(School of Materials Science and Engineering, North University of China, Taiyuan 030051, China)
Abstract: Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phase(I-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150-450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I-phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.
Key words: quasicrystal phase; Mg-Zn-Y-(Zr) alloys; microstructure; mechanical properties
CLD number: TB31 Document code: A
Article ID: 1674-8042(2017)02-0134-13 doi: 10.3969/j.issn.1674-8042-2017-02-005
References
[1]Beals R S, Tissington C, Zhang X, et al. Magnesium global development: Outcomes from the TMS 2007 annual meeting. Journal of the Minerals, Metals and Materials Society, 2007, 59(8): 39-42.
[2]Kim Y K, Kim W T, Kim D H. Quasicrystal-reinforced Mg alloys. Science and Technology of Advanced Materials, 2014, 15(2): 024801.
[3]LIU Yong, YUAN Guang-yin, LU Chen, et al. Stable icosahedral phase in Mg-Zn-Gd alloy. Scripta Materialia, 2006, 55(10): 919-922.
[4]Singh A, Tsai A P. A new orientation relationship OR4 of icosahedral phase with magnesium matrix in Mg-Zn-Y alloys. Scripta Materialia, 2005, 53(9): 1083-1087.
[5]Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 1984, 53(20): 1951.
[6]Zhang Z, Ye H Q, Kuo K H. A new icosahedral phase with m35 symmetry. Philosophical Magazine A, 1985, 52(6): L49-L52.
[7]Kuo K H. Salient features of quasicrystals. Materials Chemistry and Physics, 1994, 39(1): 1-11.
[8]Ma L, Wang R, Kuo K H. Quasicrystals in rapidly solidified alloys of Al Pt group metals-IV. Quasicrystals in rapidly solidified Al Pd and Al Pt alloys. Journal of the Less Common Metals, 1990, 163(1): 37-49.
[9]He A Q, Ye H Q, Kuo K H. Relationship between the icosahedral quasicrystal and the related crystal phase in a quenched Fe52Nb48 alloy. Scripta Metallurgica, 1989, 23(4): 533-536.
[10]Steinhardt P J, Jeong H C. A simpler approach to Penrose tiling with implications for quasicrystal formation. Nature, 1996, 382(6590): 431.
[11]Ramachandrarao P, Sastry G V S. A basis for the synthesis of quasicrystals. Pramana, 1985, 25(2): L225-L230.
[12]Mukhopadhyay N K, Subbanna G N, Ranganathan S, et al. An electron microscopic study of quasicrystals in a quaternary alloy: Mg32 (Al, Zn, Cu) 49. Scripta Metallurgica, 1986, 20(4): 525-528.
[13]Rajasekharan T, Akhtar D, Gopalan R, et al. The quasi-crystalline phase in the Mg-Al-Zn system. Nature, 1986, 322(6079): 528-530.
[14]Sastry G V S, Rao V V, Ramachandrarao P, et al. A new quasi-crystalline phase in rapidly solidified Mg4CuAl6. Scripta Metallurgica, 1986, 20(2): 191-193.
[15]Luo Z, Zhang S, Tang Y, et al. Quasicrystals in as-cast Mg-Zn-RE alloys. Scripta Metallurgica et Materialia, 1993, 28(12): 1513-1518.
[16]Tang Y L, Zhao D S, Luo Z P, et al. Morphology and the structure of quasicrystal phase in as-cast and melt-spun Mg-Zn-Y-Zr alloys Scripta Metallurgica et Materialia, 1993, 29(7): 955-958.
[17]Pierce F S, Poon S J, Guo Q. Electron localization in metallic quasicrystals. Science, 1993, 261(5122): 737-740.
[18]Dubois J M, Plaindoux P, Berlin-Ferre E, et al. In: Proceedings of the Sixth International Conference on Quasicrystals, Singapore: World Scientific, 1997.
[19]Bae D H, Kim Y, Kim I J. Thermally stable quasicrystalline phase in a superplastic Mg-Zn-Y-Zr alloy. Materials Letters, 2006, 60(17): 2190-2193.
[20]Xu D K, Liu L, Xu Y B, et al. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985-994.
[21]Singh A, Nakamura M, Watanabe M, et al. Quasicrystal strengthened Mg-Zn-Y alloys by extrusion. Scripta Materialia, 2003, 49(5): 417-422.
[22]LUO Zhi-ping ZHANG Shao-qing. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements. Journal of Materials Science Letters, 1993, 12(19): 1490-1492.
[23]LUO Zhi-ping ZHANG Shao-qing, TANG Ya-li, et al. Quasicrystals in as-cast Mg-Zn-RE alloys. Scripta Metallurgica et Materialia, 1993, 28(12): 1513-1518.
[24]Xu D K, Han E H. Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review. Progress in Natural Science: Materials International, 2012, 22(5): 364-385.
[25]Lee J Y, Lim H K, Kim D H, et al. Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys. Materials Science and Engineering: A, 2007, 449: 987-990.
[26]Xu D K, Tang W N, Liu L, et al. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg-Zn-Y-Zr alloys. Journal of Alloys and Compounds, 2007, 432(1): 129-134.
[27]Xu D K, Liu L, Xu Y B, et al. The influence of element Y on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys. Journal of Alloys and Compounds, 2006, 426(1): 155-161.
[28]Zeng X, Zhang Y, Lu C, et al. Precipitation behavior and mechanical properties of a Mg-Zn-Y-Zr alloy processed by thermo-mechanical treatment. Journal of Alloys and Compounds, 2005, 395(1): 213-219.
[29]Xu D K, Liu L, Xu Y B, et al. Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering: A, 2007, 443(1): 248-256.
[30]Xu D K, Liu L, Xu Y B, et al. The strengthening effect of icosahedral phase on as-extruded Mg-Li alloys. Scripta Materialia, 2007, 57(3): 285-288.
[31]Park E S, Yi S, Ok J B, et al. In: Proceedings of the MRS Fall Meeting, Boston, 2001.
[32]Singh A, Osawa Y, Somekawa H, et al. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase. Scripta Materialia, 2011, 64(7): 661-664.
[33]Mora E, Garcés G, Onorbe E, et al. High-strength Mg-Zn-Y alloys produced by powder metallurgy. Scripta Materialia, 2009, 60(9): 776-779.
[34]Chang H J, Kim W T, Kim D H. Quasicrystal as a Reinforcement Material in Magnesium Alloys. Israel Journal of Chemistry, 2011, 51(11/12): 1176-1184.
[35]Oh-Ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4 Zn-0.1 Ag-0.1 Ca-0.16 Zr (at.%) alloys. Acta Materialia, 2009, 57(18): 5593-5604.
[36]Zhang Y, Zeng X, Liu L, et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering: A, 2004, 373(1): 320-327.
[37]Bae D H, Lee M H, Kim K T, et al. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys. Journal of Alloys and Compounds, 2002, 342(1): 445-450.
[38] TANG Ya-li, ZHANG Shao-qing, LUO Zhi-ping, et al. On the chemical composition analysis of the icosahedral phase in an Mg- Zn-Y-Zr ingot. Journal of Alloys and Compounds, 1994, 204(1/2): 17-19.
[39]Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys. Materials Letters, 2005, 59(29): 3801-3805.
[40]Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343-2356.
[41]Langsdorf A, Ritter F, Assmus W. Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn-Mg-Y. Philosophical Magazine Letters, 1997, 75(6): 381-388.
[42]Xu S W, Zheng M Y, Kamado S, et al. Dynamic microstructural changes during hot extrusion and mechanical properties of a Mg-5.0 Zn-0.9 Y-0.16 Zr (wt.%) alloy. Materials Science and Engineering: A, 2011, 528(12): 4055-4067.
[43]Chang H J, Lee J Y, Kim D H. Microstructural evolution and the role of interfaces in Mg-Zn-Y alloys with high strength and formability. Journal of Physics: Condensed Matter, 2008, 20(31): 314001.
[44]Niikura A, Tsai A P, Inoue A, et al. New class of amorphous and icosahedral phases in Zn-Mg-rare-earth metal alloys. Japanese Journal of Applied Physics, 1994, 33(11A): L1538.
[45]Yang Y, Zhang K, Ma M, et al. Microstructure and phase transformation of forged Mg-3.7 Zn-0.3 Y-0.3 Gd quasicrystal alloy. Journal of Materials Research, 2015, 30(10): 1693-1700.
[46]Styczynski A, Hartig C, Bohlen J, et al. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Materialia, 2004, 50(7): 943-947.
[47]Liu J F, Yang Z Q, Ye H Q. In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg-Zn-Y alloys. Journal of Alloys and Compounds, 2015, 621: 179-188.
[48]Shoemaker D P, Shoemaker C B. Icosahedral coordination and orientation in crystalline metallic phases. In: Proceedings of Materials Science Forum, 1987, 22: 67-82.
[49]Shen Z, Kramer M J, Jenks C J, et al. Crystalline surface structures induced by ion sputtering of Al-rich icosahedral quasicrystals. Physical Review B, 1998, 58(15): 9961.
[50]Agnew S R, Duygulu . Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity, 2005, 21(6): 1161-1193.
[51]Lee J Y, Lim H K, Kim D H, et al. Effect of icosahedral phase particles on the texture evolution in Mg-Zn-Y alloys. Materials Science and Engineering: A, 2008, 491(1): 349-355.
[52]Del Valle J A, Pérez-Prado M T, Ruano O A. Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metallurgical and Materials Transactions A, 2005, 36(6): 1427-1438.
[53]Philippe M J. Texture formation in hexagonal materials. In: Proceeding of Materials Science Forum, 1994, 157: 1337-1350.
[54]Singh A, Watanabe M, Kato A, et al. Twinning and the orientation relationships of icosahedral phase with the magnesium matrix. Acta Materialia, 2005, 53(17): 4733-4742.
[55]Singh A, Tsai A P. A new orientation relationship OR4 of icosahedral phase with magnesium matrix in Mg-Zn-Y alloys. Scripta Materialia, 2005, 53(9): 1083-1087.
[56]Singh A, Watanabe M, Kato A, et al. Strengthening effects of icosahedral phase in magnesium alloys. Philosophical Magazine, 2006, 86(6/7/8): 951-956.
[57]Humphreys F J. Local lattice rotations at second phase particles in deformed metals. Acta Metallurgica, 1979, 27(12): 1801-1814.
[58]Singh A, Osawa Y, Somekawa H, et al. Development of very high strength and ductile dilute magnesium alloys by dispersion of quasicrystal phase. Metallurgical and Materials Transactions A, 2014, 45(8): 3232-3240.
[59]Ma R, Dong X, Yan B, et al. Mechanical and damping properties of thermal treated Mg-Zn-Y-Zr alloys reinforced with quasicrystal phase. Materials Science and Engineering: A, 2014, 602: 11-18.
[60]WQANG Jing, LIU Rui-dong, DONG Xu-guang, et al. Microstructure and mechanical properties of Mg-Zn-Y-Nd-Zr alloys. Journal of Rare Earths, 2013, 31(6): 616-621.
[61]Somekawa H, Singh A, Mukai T. Effect of precipitate shapes on fracture toughness in extruded Mg-Zn-Zr magnesium alloys. Journal of Materials Research, 2007, 22(4): 965-973.
[62]Tsai A P, Murakami Y, Niikura A. The Zn-Mg-Y phase diagram involving quasicrystals. Philosophical Magazine A, 2000, 80(5): 1043-1054.
[63]Singh A, Tsai A P, Nakamura M, et al. Nanoprecipitates of icosahedral phase in quasicrystal-strengthened Mg-Zn-Y alloys. Philosophical Magazine Letters, 2003, 83(9): 543-551.
[64]Somekawa H, Singh A, Mukai T. High fracture toughness of extruded Mg-Zn-Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase. Scripta Materialia, 2007, 56(12): 1091-1094.
[65]ZHANG Ying-bo, YU Si-rong, LUO Yan-ru, et al. Friction and wear behavior of as-cast Mg-Zn-Y quasicrystal materials. Materials Science and Engineering: A, 2008, 472(1): 59-65.
[66]Sajuri Z B, Miyashita Y, Hosokai Y, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198-209.
[67]Eisenmeier G, Holzwarth B, H ppel H W, et al. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319: 578-582.
[68]Tokaji K, Kamakura M, Ishiizumi Y, et al. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy.. International Journal of Fatigue, 2004, 26(11): 1217-1224.Mg-Zn-Y-(Zr)
合金中的二十面体准晶相
卜志强, 鲁若鹏, 侯华, 程鹏
(中北大学 材料科学与工程学院, 山西 太原 030051)
摘要:镁合金拥有许多独特优点, 被认为是最具有应用前景的材料之一。 然而, 力学性能相对较低限制了镁合金的应用。 二十面体准晶相作为一种相对优良的镁合金增强相, 对Mg-Zn-Y-(Zr)合金性能有很大的影响。 通过改变准晶相的体积分数, Mg-Zn-Y-(Zr)合金在室温下的的屈服强度可达到150-450 MPa, 因而生成准晶相被视为一种改善镁合金性能的有效方法。 本文讨论了一系列含有准晶的Mg-Zn-Y-(Zr)合金, 包括准晶相的形成机理、 准晶相的结构和其与镁基体的位向关系, 以及准晶相对镁合金性能的影响。
关键词:准晶相; Mg-Zn-Y-(Zr)合金; 组织; 力学性能
引用格式:BU Zhi-qiang, LU Ruo-peng, HOU Hua, et al. Icosahedral quasicrystal phase in Mg-Zn-Y-(Zr) alloys: A review. Journal of Measurement Science and Instrumentation, 2017, 8(2): 134-146. [doi: 10.3969/j.issn.1674-8042.2017-02-005]
[full text view]