此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Study on structural, mechanical and thermodynamic properties of TiAl alloy under high pressure based on first-principles


 

DENG Shi-jie1, ZHAO Yu-hong1, WEN Zhi-qin1, HAN Pei-de2

 

(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;  2. School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

 

Abstract: The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decreases with the pressure increasing. We calculated the Cij at various pressures and all the results satisfy mechanical stability criteria, thus the TiAl alloy is mechanically stable. The elastic constants, bulk modulus and shear modulus calculated are well in agreement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure increasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the increase of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10-20 GPa . The Debye temperature, linear thermal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures, and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced.

 

Key words: TiAl alloy; first-principles; crystal structure; elastic properties; thermodynamic properties; electronic structure

 

CLD number: TB303Document code: A

 

Article ID: 1674-8042(2017)02-0147-07   doi: 10.3969/j.issn.1674-8042-2017-02-006

 

References

 

[1]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics. Acta Materialia, 2000, 48(1):  307-322.
[2]Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics, 2000, 8(9/10/11): 1283-1312.
[3]Ghosh G, Walle A V D, Asta M. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM=Ti, Zr and Hf) systems:  A comparison of cluster expansion and supercell methods. Acta Materialia, 2008, 56(13): 3202-3221.
[4]Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing. Intermetallics, 2004, 12(3): 275-280.
[5]LI Xu-sheng, WANG Hai-yan, LI Chang-yun, et al. Structural and thermodynamic properties of TiAl intermetallics under high pressure. Communications in Theoretical Physics, 2012, 57(1): 141-144.
[6]LI Xu-sheng, HUO Xiao-yang, GAO Jie, et al. Journal of Sichuan University(natural science edition), 2012, 49(2): 367-372.
[7]WANG Hai-yan, HU Qian-ku, YANG Wen-peng, et al. Acta Physic Sinca, 2016, (7): 264-272.
[8]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B: Condensed Matter, 1986, 34(10): 7406.
[9]Lindan P J D. First-principles simulation:  ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002, 14(11):  2717.
[10]Laasonen K, Pasquarello A, Car R, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B: Condensed Matter, 1993, 47(16): 10142.
[11]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 78(18):  3865.
[12]Schantz R L. Copper metallurgy. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1974, (15): 57-76.
[13]WANG Hai-yan, LI Chang-yun, GAO Jie, et al. Acta Physica Sinica, 2013, 62(6): 000443-448.
[14]ZHOU Ping, WANG Xin-qiang, ZHOU Mu, et al. Acta Physica Sinica, 2013, 62(8): 87104.
[15]ZHANG Xu-dong, JIANG Wei. Lattice stabilities, mechanical and thermodynamic properties of Al_3Tm and Al_3Lu intermetallics under high pressure from first-principles calculations. Chinese Physics B, 2016, 25(2): 338-347.
[16]Finger L W. Physical properties of crystals, their representation by tensors and matrices. Physics Today, 1985, 36(12): 506-506.
[17]HU Hai, WU Xiao-zhi, WANG Rui, et al. Phase stability, mechanical properties and electronic structure of TiAl alloying with W, Mo, Sc and Yb:  First-principles study. Journal of Alloys & Compounds, 2016, 658:  689-696.
[18]Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 1954, 45(367): 823-843.
[19]Blanco M A, Francisco E, Lua a V. GIBBS:  isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 2004, 158(1): 57-72.
[20]Otero-De-La-Roza A, Abbasi-Pérez D, Lua a V. GIBBS2:  A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Computer Physics Communications, 2011, 182(10):  2232-2248.
[21]WANG Yan-dong, SUN Zu-qing, CHEN Guo-liang, et al. Debye temperature and valence electron structure of intermetallic compound TiAl. The Chinese Journal of Nonferrous Metals, 1992, (2): 44-46.

 

基于第一性原理的高压下TiAl结构、力学性能及热力学性质研究

 

邓世杰1, 赵宇宏1, 文志勤1, 韩培德2

 

(1. 中北大学 材料科学与工程学院, 山西 太原 030051; 2. 太原理工大学 材料科学与工程学院, 山西 太原 030024)

 

摘要:采用第一性原理计算方法, 研究了压力与温度对TiAl合金结构、 力学性能与热力学性质的影响。 结果显示, 随着外加压力的增加, TiAl体积比降低。 计算了不同压力下TiAl的弹性常数Cij , 所有Cij均力学稳定性判据, 表明不同压力下的模拟结果均满足力学稳定性条件。 通过弹性常数, 计算了体模量与剪切模量, 发现在0 GPa下的计算值与文献值相吻合, 表明计算的准确性。 体模量与剪切模量可以用来反映材料抵抗变形能力, 随着压力的增加, 其数值增加, 表明材料抵抗变形能力得到提升。 由B/G发现, 当压力在10-20 GPa之间时, TiAl由脆性材料转变为延性材料。 借助准谐德拜模型, 研究了当温度在0-1 000 K、 压力在0-50 GPa下压力与温度对TiAl体模量、 德拜温度、 线膨胀系数以及热容的影响, 这有助于研究温度与压力对热力学参数的影响。 最后, 研究了不同压力下TiAl的电子结构, 随着压力的增加, 材料的态密度强度降低, Ti原子成键相互作用减弱, Al原子成键相互作用增强, 材料的延性得到提升。

 

关键词:TiAl合金; 第一性原理; 晶体结构; 弹性性能; 热力学性质; 电子结构

 

引用格式:DENG Shi-jie, ZHAO Yu-hong, WEN Zhi-qin, et al. Study on structural, mechanical and thermodynamic properties of TiAl alloy under high pressure based on first-principles. Journal of Measurement Science and Instrumentation, 2017, 8(2): 147-153. [doi: 10.3969/j.issn.1674-8042.2017-02-006]

 

[full text view]