此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Study on structural stability, elastic and electronic properties for β-Ti under pressure based on first


ZHANG Yong-mei1,2, ZHANG Le-ting1, ZHAO Yu-hong1

 

(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 2. School of Science, North University of China, Taiyuan 030051, China)

 

Abstract: The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by performing first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further confirmed by the calculation for density of state (DOS). The phase transition pressure of α→β is about 64.3 GPa, which is consistent with other theoretical predictions (63.7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young’s modulus value of about30.01 GPa,  which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio σ, aggregate sound velocities, and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while σ descends. β-Ti remains ductile by analysis of B/G under considered pressures.

 

Key words: first-principles; structural stability; elastic property; electronic structure;  Ti

 

CLD number: TB303  Document code: A

 

 

Article ID: 1674-8042(2017)02-0162-06  doi: 10.3969/j.issn.1674-8042-2017-02-008

 

References

 

[1]Banerjee D, Williams J C. Perspectives on titanium science and technology. Acta Materialia, 2013, 61(3): 844-879.
[2]Akahama Y, Kawamura H, LeBihan T. Newδ (Distorted-bcc)-Titanium to 220 GPa. In: Proccedings of Abstract of International Conference on High Pressure Science and Technology, 2001, 87: 275503.
[3]Vohra Y K, Spencer P T.  Novel γ-phase of titanium metal at megabar pressures. Physics Review Letters, 2001, 86(14): 3068-3071.
[4]Akahama  Y, Kawamura H, LeBihan T. A new distorted body-centred cubic phase of titanium (β-Ti) at pressures up to 220 GPa. Journal of Physics Condensed Matter, 2002, 14(44) :10583-10588.
[5]ZONG Hong-xiang, XUE De-zhen, DING Xiang-dong, et al. Phase transformations in titanium: anisotropic deformation of ω phase. Journal of Physics: Conference Series, 2014, 500(1): 112042
[6]HAO Yan-jun, ZHU Jun, ZHANG Lin, et al. First-principles study of high pressure structure phase transition and elastic properties of titanium. Solid State Sciences, 2010, 12(8): 1473-1479
[7]MEI Zhi-gang, SHANG Shun-li, WANG Yi, et al. Density-functional study of the pressure-induced phase transitions in Ti at zero Kelvin. Physical Review B, 2009, 79: 134102.
[8]Tane M, Okuda Y, Todaka Y, et al. Elastic properties of single-crystalline x phase in titanium. Acta Materialia, 2013, 61(20): 7543-7554.
[9]Ahuja R, Dubrovinsky L, Dubrovinskaia N, et al. Titanium metal at high pressure: Synchrotron experiments and ab initio calculations. Physical Review B, 2004, 69(18): 1324-1332 .
[10]Dewaele  A, Stutzmann V, Bouchet J, et al. High pressure-temperature phase diagram and equation of state of titanium. Physical Review B, 2015, 91(13): 134108.
[11] MEI Zhi-gang, SHANG Shun-li, WANG Yi, et al. Density-functional study of the thermodynamic properties and the pressure-temperature phase diagram of Ti. Physical Review B, 2009, 80(10): 104116.
[12]Adachi N, Todaka Y, Irie K, et al. Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion. Journal of Materials Science, 2016, 51(5): 2608-2615.
[13]Kutepov A L, Kutepova S G. Crystal structures of Ti under high pressure: Theory. Physical Review B, 2003, 67(67): 614-624.
[14]Nye J F. Physical properties of crystals. Oxford: Oxford University, 1985.
[15]Ahuja R, Wills J M, Johansson B, et al. Crystal structures of Ti, Zr, and Hf under compression: Theory. Physical Review B, 1993, 48(22): 16269.
[16]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics Condensed Matter, 2002, 14(11): 2717.
[17]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77: 3865.
[18]Aguayo A, Murrieta G, de Coss R. Elastic stability and electronic structure of fcc Ti, Zr, and Hf: A first-principles study. Physical Review B,  2002, 65: 092106.
[19]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B,  1976, 13(12): 5188-5192.
[20]FAN Chang-zeng, ZENG Song-yan, LI lin-xin, et al. Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations. Physical Review B, 2006, 74(12): 125118.
[21]Tonkov E Y, Ponyatovsky E G. Phase Transformations of elements under high pressure. Boca Raton: CRC Press, 2005: 224.
[22]HU Cui-e, ZENG Zhao-yi, ZHANG Lin, et al. Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal. Journal of Applied Physics, 2010, 107(9): 564.
[23]Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys. Physical Review B, 2004, 70(17): 3352-3359.
[24]Ledbetter H, Ogi H, Kai S, et al. Elastic constants of body-centered-cubic titanium monocrystals. Journal of Applied Physics, 2004, 95(9): 4642-4644.
[25]ZHANG Su-hong. First-principles study on the structural stabilities, electronic and elastic properties for zirconium under pressure. Computational Materials Science, 2010, 50(1): 179-183.
[26]Hill R. The elastic behaviour of a crystalline aggregate. In: Proceedings of the Physical  Society, 2002, 65(5): 349.
[27]Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843.
[28]DU Jin-lian, WEN Bin, Melnik R, et al. First-principles studies on structural, mechanical, thermodynamic and electronic properties of NiZr intermetallic compounds. Intermetallics  2014, 54(11): 110-119.

 

高压下β-Ti 的结构稳定性、 弹性和电子性能的第一性原理研究

 

张永梅1,2, 张乐婷1, 赵宇宏1

 

(1. 中北大学 材料科学与工程学院, 山西 太原 030051; 2. 中北大学 理学院, 山西 太原 030051)

 

摘要:应用第一性原理的方法, 研究了高压下β-Ti在0 K下的结构稳定性、 弹性和电子性能。 吉布斯自由能和电子态密度的研究表明, 随着压力的增加, β-Ti 的结构趋于稳定。 β→β 的相变压强为 64.3 GPa, 这一计算结果与其它的理论结果 63.7 GPa 和实验结果 50 GPa相吻合。 弹性常数的计算表明, β-Ti 力学稳定的低压极限约为50 GPa, 该压力下的弹性模量约为30.01 GPa, 接近人体骨骼的弹性模量30 GPa。 另外, 讨论了不同压力下β-Ti体积模量B、 剪切模量G、 杨氏模量E、 泊松比β、 声速和韧性/脆性。 随着压力的增加, B, G, E增加, 但是β减小。 B/G 计算表明, β-Ti具有良好的韧性。

 

关键词:第一性原理; 结构稳定性; 弹性性能; 电子结构; 钛

 

引用格式:ZHANG Yong-mei, ZHANG Le-ting, ZHAO Yu-hong. Study on structural stability, elastic and electronic properties for β-Ti under pressure based on first principles. Journal of Measurement Science and Instrumentation, 2017, 8(2): 162-167. [doi: 10.3969/j.issn.1674-8042.2017-02-008]

 

[full text view]