此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator

Seong-ik HAN1, Kwon-soon LEE1, Dae-yeon YEO1, Sang-ok HAN 2, Kyung-wan KOO3

 

Dept. of Electrical Engineering, Dong-A Univsersity, Busan 604- 714, Korea;2. Dept. of Electrical Engineering, Chungnam National University, Cheonan 30 5-764, Korea;3. Dept. of Defense Science of Technology, Hoseo University, Cheonan 330-71 3, Korea

 

Abstract-A nonlinear dynamic friction control is dealt with us ing dynamic friction observer and intelligent control. The adaptive dynamic fric tion observer based on the LuGre friction is proposed to estimate the friction p arameters and a directly immeasurable friction state variable. The dynamic struc tured Recurrent Fuzzy Neural Network(RFNN) is designed to give additional robust ness to the control system under the presence of the friction model uncertainty.  A proposed composite control scheme is applied to the position tracking control  of the servo system. The performances of the proposed friction observer and the  friction controller are demonstrated by simulation.

 

Key words-LuGre friction model; adaptive friction obser ver; dynamic structured RFNN; servo system control

 

Manuscript Number: 1674-8042(2011)02-0191-04

 

dio: 10.3969/j.issn.1674-8042.2011.02.22

 

References

 

[1]C. Canudas de Wit, H. Olsson, K. Astrom, P. Lischinsky, 1995. A new  model for control of systems with friction. IEEE Trans. A.C.,  40(3): 419-425.

[2]S. S. Ge, T. H. Lee, S. X. Ren, 2001. Adaptive friction compensation  of servo mechanisms. Inter. J. of System Scien., 32(4): 523 -532.
 
[3]L. Alvarez, J. Yi, R. Horowitz, L. Olmos, 2005. Dynamic friction mod el-based tire-road friction estimation and emergency braking control. Trans. of ASME, 127: 23-32.

[4]Y. G. Leu, T. T. Lee, W. Y. Wang, 1997. On-line turning of fuzzy-n eural network for adaptive control of nonlinear dynamical systems. IEEE Trans. S yst., Man, Cybern., 27(6): 1034-1043.

[5]J. Zhang, A. J. Morris, 1999. Recurrent neuro-fuzzy networks for no nlinear process modeling. IEEE Trans. Neural Netw., 10(2): 31 3-326.

[6]F. J. Lin, R. J. Wai, 2003. Robust recurrent fuzzy neural network co ntrol for linear synchronous motor drive system. Neurocomputing, 50: 365-390.

[7]C. F. Hsu., C. M. Lin, T. T. Lee, 2006. Wavelet adaptive backsteppin g control for a class of nonlinear systems. IEEE Trans. Neural Network s, 17: 1175-1183.

[8]K. S. Narendra, A. M. Annaswamy, 1989. Stable adaptive systems, Pren tice-Hall.
 

 

[full text view]