此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Low Dynamic Range Solutions to the High Dynamic Range Imaging Problem

Shanmuganathan RAMAN,  Subhasis CHAUDHURI

 

Indian Institute of Technology Bombay, Mumbai 400 076, India

 

Abstract-While capturing a real world scene using a common di gital camera, due to limitations of the sensor dynamic range, we will not be abl e to capture the entire dynamic range of the scene. This problem is evident whil e capturing a picture of a scene which has both brightly and poorly illuminated  regions. High Dynamic Range (HDR) imaging aims to recover the entire dynamic ran ge of the scene by compositing multi-exposure images. Tone reproduction is requ ired for displaying HDR images as the corresponding Low Dynamic Range(LDR) imag es on common displays. This paper discusses novel approaches to reconstruct LDR  images directly from multi-exposure images. It is assumed that there is no kno wledge of camera response function and other camera settings. At last, it is exp lained how this task can be achieved effectively for static and dynamic scenes.

 

Key words-computational photography; HDR imaging; dig ital compositing

 

Manuscript Number: 1674-8042(2010)01-0032-05

 

dio: 10.3969/j.issn.1674-8042.2010.01.06

 

References

 

[1] P. Debevec, J. Malik, 1997. Recovering High Dynamic Range Radiance  Maps from Photographs. SIGGRAPH, New York, NY, USA.

[2] S. Mann, R. W. Picard, 1995. On Being Undigital with Digital Camera s: Extending Dynamic Range by Combining Exposed Pictures. Proc. of IS & T 48th A nnual Conference, p.422-428.

[3] T. Mitsunaga, S. K. Nayar, 1999. Radiometric Self Calibration. CVPR , Ft. Collins, CO, USA.

[4] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, 2005. High Dynamic  Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann P ublishers.

[5] A. Goshtasby, 2005. Fusion of multi-exposure images. Ima ge and Vision Computing, 23: 611-618.

[6] K. Jacobs, C. Loscos, G. Ward, 2008. Automatic high-dynamic range  image generation for dynamic scenes. IEEE Computer Graphics and App lications, 28(2): 84-93.

[7] O. Gallo, N. Gelfand, W. Chen, M. Tico, K. Pulli, 2009. Artifact-f ree High Dynamic Range Imaging. ICCP, San Francisco, USA.

[8] J. F. Blinn, 1994. Compositing, part 1: Theory. IEEE Comp uter Graphics & Applications, 14(5): 83-87.

[9] T. Porter, T. Duff, 1984. Compositing Digital Images. SIGGRAPH.

[10] R. Szeliski, 2008. Image alignment and stitching: A tutorial, Foundations and Trends in Computer Graphics and Vision. 2(1): 1- 104.

[11] T. Mertens, J. Kautz, F. V. Reeth, 2009. Exposure fusion: A simple   and practical alternative to high dynamic range photography. Computer  Graphics Forum, 28(1): 161-171.

[12] S. Raman, S. Chaudhuri, 2007. A Matte-Less, Variational Approach  to Automatic Scene Compositing. ICCV, Rio de Janeiro, Brazil.

[13] B. K. P. Horn, 1986. Robot Vision. The MIT Press.

[14] C. Tomasi, R. Manduchi, 1998. Bilateral Filtering for Gray and C olor Images. ICCV, Bombay, India.

[15] S. Raman, S. Chaudhuri, 2009. Bilateral Filter Based Compositing f o r Variable Exposure Photography. EUROGRAPHICS Short Papers, Munich, Germany.

[16] S. Paris, F. Durand, 2006. A Fast Approximation of the Bilateral F ilter using a Signal Processing Approach. ECCV, Graz, Austria.

[17] P. Perez, M. Gangnet, A. Blake, 2003. Poisson Image Editing. SIGGR APH.

[18] S. Raman, S. Chaudhuri, 2009. Poisson Compositing. SIGGRAPH ASIA′ 09: ACM SIGGRAPH ASIA 2009 Sketches, Yokohama, Japan.

[19] A.Agrawal, R.Raskar, R. Chellappa, 2006. What is the Range of Surf ace Reconstructions from a Gradient Field. ECCV, Graz, Austria.

[20] S. Raman, V. Kumar, S. Chaudhuri, 2009. Blind De-Ghosting for Aut omatic Multi-Exposure Compositing. SIGGRAPH ASIA ′09: ACM SIGGRAPH ASIA 2009  Posters, Yokohama, Japan.

 


[Full Text View]