此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Nonlinear Control of Magnetic Bearings

Khac Duc Do1, Dang Hoe Nguyen2, Thanh Binh Nguyen3


1. School of Mechanical Engineering, University of Western Austra lia, WA 6009, Australia;  2. Vice-Rectoral Office, Thainguyen University of Technology, Thainguyen, Vietn am; 3. Dept. of Human Resource, University of Thainguyen, Thainguyen, Viet nam)

 

Abstract-In this paper, recent results controling nonlinear s ystems with output tracking error constraints are applied to the design of new t racking controllers for magnetic bearings. The proposed controllers can force th e rotor to track a bounded and sufficiently smooth reference trajectory asymptot ically and guarantee non-contactedness between the rotor and the stator of the  magnetic bearings. Simulation results are included to illustrate the effectivene ss of the proposed controllers.

 

Key words-nonlinear system; output constraint; backstep ping; Lyapunov method


Manuscript Number: 1674-8042(2010)01-0010-07


dio: 10.3969/j.issn.1674-8042.2010.01.02

References

[1] H.Bleuler, D.Vischer, G.Schweitzer, et al, 1994. Ne concepts for cos t-effective magnetic bearing control. Automarica, 30(5): 871 -876.

[2] A.M.Mohamed, F.P.Emad, 1992. Conical magnetic bearings with radia l and thrust control. IEEE Transactions on Automatic Control,  37: 1859-1868.

[3] R.D.Smith, W.F.Weldon, 1995. Nonlinear control of a rigid rotor magn etic bearing system: Modeling and simulation with full state feedback. IEEE Transactions on Magnetics, 31: 973-980.

[4] F.Mazenc, M.S.de Queiroz, M.Malisoff, et al, 2006. Further results o n active magnetic bearing control with input saturation. IEEE Transact ions on Control Systems Technology, 14(5): 914-919.

[5] G.R.Duan, D.Howe, 2003. Robust magnetic bearing control via eigenstr ucture assignment dynamical compensation. IEEE Transactions on Control  Systems Technology, 11(2): 204-215.

[6] X.Chen, C.Y.Su, T.Fukuda, 2004. A nonlinear disturbance observer for  multivariable systems and its application to magnetic bearing systems. IEEE Transactions on Control Systems Technology, 12(4): 569-577.

[7] T.P.Minihana, S.Leia, G.Suna, et al, 2003. Large motion tracking con trol for thrust magnetic bearings with fuzzy logic, slidingmode, and direct line arization. Journal of Sound and Vibration, 263: 549-567.

[8] M.Krstic, I.Kanellakopoulos, P.Kokotovic, 1995. Nonlinear and Adapti ve Control Design. Wiley, New York.

[9] H.Khalil, 2002. Nonlinear systems. Prentice Hall.

[10] R.Marino, P.Tomei, 1995. Nonlinear Adaptive Design: Geometric, Adap tive, and Robust. Prentice-Hall, London.

[11] B.D.O.Anderson, M.Deistler, L.Farina, et al, 1996. Nonnegative real ization of a linear system with nonnegative impulse response. IEEE Tra nsactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2): 134-142.

[12] S.F.Phillips, D.E.Seborg, 1998. Conditions that guarantee no oversh oot for linear systems. International Journal of Control, 47( 4):1043-1059.

[13] M.E.-K.R.Longchamp, O.D.Crisalle, 1993. Influence of zero location s on the number of ste p-response extrema. Automatica, 2 9: 1571-1574.

[14] S.Darbha, S.P.Bhattacharrya, 2003. On the synthesis of controlle rs for a nonovershooting step response. IEEE Transactions on Automatic  Control, 48(5): 797-799.

[15] M.T.Bement, S.Jayasuriya, 2004. Construction of a set of nonoversho oting tracking controllers. Journal of Dynamic Systems, Measurement an d Control, 126(3): 558-567.

[16] M.T.Bement, S.Jayasuriya, 2004. Use of state feedback to achieve a  nonovershooting step response for a class of nonminimum phase systems. Journal of Dynamic Systems, Measurement and Control, 126(3): 657-6 60.

[17] M.Krstic, M.Bement, 2006. Nonovershooting control of strict-feedba ck nonlinear systems. IEEE Transactions on Automatic Control, 51(12): 1938-1943.

[18] Z.H.Li, M.Krstic, 1997. Maximizing regions of attraction via backst epping and clfs with singularities. Systems and Control Letters, 30: 195-207.

[19] K.P.Tee, S.S.Ge, F.E.H.Tay, 2009. Barrier lyapunov functions fo the  control of output-constrained nonlinear systems. Automatica, 45(4): 918-927.

[20] K.B.Ngo, R.Mahony, Z.P.Jiang, 2005. Integrator Backstepping Using B arrier Functions for Systems with Multiple State Constraints. Proceedi ngs of the 44th IEEE Conference on Decision and Control, 8306-8312.

[21] K.D.Do, D.B.Nguyen, 2009. Control of Nonlinear Systems with Outpu t Racking Error Constraints. The First International Conference on Smart IT Appl ications, China.

[22] H.H.Woodson, J.R.Melcher, 1968. Electromechanical Dynamics-Part I: Discrete Systems. Englewood Cliffs, Prentice-Hall, New York.

[23] K.Do, J.Pan, 2008. Nonlinear control of an active heave compensa tion system. Ocean Engineering, 35(5-6): 558-571.


 


[Full Text View]