此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Ultrasonic Resonator Techniques for Broad-band Spectroscopy and for High-resolution Sound Velocity Measurement of Liquids

Udo Kaatze1, Frieder Eggers2

 

1. Drittes Physikalisches Institut, Georg-August-Universitt Gttingen,  Gttingen 37077, Germany;2. Max-Planck-Institut fuer Biophysikalische Chemie, Gttingen 37077, Germany

 

Abstract-This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic spectroscopy as well as in high-resolution single-frequency or narrow-band applications are presented. Deviations of the field configuration in real cells from that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for materials characterization, in manufacturing processes, as well as in control routines.

 

Key words-ultrasonic measurements; liquids; sound velocity; sound attenuation coefficient; resonator techniques; ultrasonic spectrometry

 

Manuscript Number: 1674-8042(2010)01-0001-09

 

dio: 10.3969/j.issn.1674-8042.2010.01.01

 

References

 

[1]M. Eigen, 1972. Immeasurably Fast Reactions. Nobel Lectures in Chemistry. Elsevier: Amsterdam.
[2]U. Kaatze, T. O. Hushcha, F. Eggers, 2000. Ultrasonic broadband spectrometry of liquids: A research tool in pure and applied chemistry and chemical physics. J. Solution Chem., 29(4): 299-368.
[3]R. E. Challis, M. J. W. Povey, M. L. Mather, et al, 2005. Ultrasound techniques for characterizing colloidal dispersions. Rep. Prog. Phys., 68(7): 1541-1637.
[4]B. J. Linde, 2006. Acoustic spectroscopy, experimental me-thods and research. Mol. Quantum Acoust, 27(1): 169-188.
[5]G. Herzfeld, T. Litovitz, 1959. Absorption and dispersion of ultrasonic waves. Academic. New York.
[6]H. Strehlow, 1992. Rapid Reactions in Solutions. VCH Wein-heim.
[7]R. Polacek, J. Stenger, U. Kaatze, 2002. Chair-chair conformational flexibility, pseudorotation, and exocyclic group isomerization of monosaccarides in water. J. Chem. Phys., 116(7): 2973-2982.
[8]J. K. Bhattacharjee, U. Kaatze, S. Z. Mirzaev, 2010. Sound attenuation near the demixing point of binary liquids. Interplay of critical dynamics and noncritical kinetics. Rep. Prog. Phys.,  73(6): 066601(36pp).
[9]A. Rupprecht, U. Kaatze, 1999. Model of noncritical concentration fluctuations in binary liquids. Verification by ultrasonic spectrometry of aqueous systems and evidence of hydrophobic effects. J. Phys. Chem. A, 103(32): 6485-6491.
[10]H. Endo, K. Honda, 2001. Sound absorption in nonelectrolyte aqueous solutions. J. Chem. Phys., 115(16): 7575-7585.
[11]M. A. Anisimov, 1991. Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach Philadelphia.
[12]A. Onuki, 2002. Phase Transition Dynamics.  Cambridge University Press. Cambridge.
[13]L. Lehmann, V. Buckin, 2005. Determination of the heat stability profiles of concentrated milk and milk ingredients using high resolution ultrasonic spectroscopy. J. Diary Sci., 88(9): 3121-3129.
[14]N. El Kadi, N. Taulier, J. Y. Le Huérou, 2006. Unfolding and refolding of bovine serum albumin at acid pH, Ultrasound and structural studies. Biophys. J., 91(9): 3397-3404.
[15]S. Hickey, M. J. Lawrence, S. A. Hagan, et al, 2006. Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy. Langmuir, 22(13): 5575-5583.
[16]N. Taifi, F. Bakkali, B. Faiz, et al, 2006. Characterization of the syneresis and the firmness of the milk gel using an ultrasonic technique. Meas. Sci. Technol., 17(2): 281-287.
[17]Q. Wang, S. Bulca, U. Kulozik, 2007. A comparison of low-intensity ultrasound and oscillating rheology to assess the renneting properties of casein solutions after UHT-heat pretreatment. Intern. Diary J., 17(1): 50-58.
[18]R. B. Shah, A. S. Zidan, T. Funck, et al, 2007. Quality design: Characterization of self-nano-emulsified drug delivery systems (SNEDDs) using ultrasonic resonator technology. Intern. J. Pharmaceutics, 341(1-2): 189-194.
[19]V. Smirnovas, R. Winter, 2008. Revealing different aggregation pathways of amyloidogenic proteins by ultrasound velocimetry. Biophys. J., 94(8): 3241-3246.
[20]P. Resa, L. Elvira, R. Montero, et al, 2009. On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics. Bioprocess Biosyst. Eng., 32(3): 321-331.
[21]G. Douhéret, M. I. Davis, J. C. R. Reis, et al, 2001. Isentropic compressibilities-experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys. Chem., 2(3): 148-161.
[22]H. Pfeiffer, K. Heremans, 2005. The sound velocity in ideal mixtures from thermal volume fluctuations. Chem. Phys. Chem., 6(4): 697-705.
[23]V. Oliynyk, M. Jger, T. Heimburg, et al, 2008. Lipid membrane domain formation and alamethicin aggregation studied by calorimetry, sound velocity measurements, and atomic force microscopy. Bio. Chem., 134(3): 168-177.
[24]J. C. R. Reis, ?. F. S. Santos, I. M. S. Lampreia, 2010. Chemical thermodynamics of the ultrasound speed in solutions and liquid mixtures. Chem. Phys. Chem., 11(2): 508-516.
[25]W. Schrader, H. Ebel, P. Grabitz, 2002. Compressibility of lipid mixtures studied by calorimetry and ultrasonic velocity measurements. J. Phys. Chem. B, 106(25): 6581-6586.
[26]R. Polacek, U. Kaatze, 2001. A small volume spherical resonator method for the acoustical spectrometry of liquids down to audio frequencies. Meas. Sci. Technol., 12(1): 1-6.
[27]U. Kaatze, F. Eggers, K. Lautscham, 2008. Ultrasonic velocity measurements in liquids with high resolution-techniques, selected applications and perspectives. Meas. Sci. Technol., 19(6): 062001 (21pp).
[28]A. Labhardt, G. Schwarz, 1976. A high resolution low volume ultrasonic resonator method for fast chemical relaxation measurements. Ber. Bunsenges. Phys. Chem., 80(1): 83-92.
[29]F. Eggers, U. Kaatze, 1996. Broad-band ultrasonic measurement techniques for liquids. Meas. Sci. Tec., 7(1): 1-19.
[30]V. Buckin, C. Smyth. High-resolution ultrasonic resonator measurements for aalysis of liquids. Semin. Food Anal., 4(2): 113-130.
[31]F. Eggers, 1992. Ultrasonic velocity and attenuation measurements in liquids with resonators, extending the MHz frequency range. Acustica, 76(1): 231-240.
[32]F. Eggers, 1997. Model calculations for ultrasonic plate-liquid-plate resonators: peak frequency shift by liquid density and velocity variations. Meas. Sci. Tec., 8(6): 643-647.
[33]V. S. Kononenko, 1985. Error of measurements in an ultrasonic resonator due to energy losses in the piezoelectric plates. Sov. Phys. Acoust., 31(6): 499-501.
[34]E. Hanke, U. Schulz, U. Kaatze, 2007. Molecular interactions in poly(ethylene glycol)-water mixtures at various temperatures: density and isentropic compressibility study. Chem. Phys. Chem., 8(4): 553-560.
[35]Z. D. Schultz, I. W. Levin, 2008. Lipid microdomain formation: characterization by infrared spectroscopy and ultrasonic velocimetry. Biophys. J., 94(8): 3104-3114.
[36]A. Ochenduszko, V. Buckin, 2010. Real-time monitoring of heat-induced aggregation of -lactoglubin in aqueous solutions using high-resolution ultrasonic spectroscopy. Int. J. Thermophys, 31(1): 113-130.
[37]L. Mei, S. J. Choi, J. Alamed, et al, 2010. Citral stability in oil-in-water emulsions with solid or liquid octadecane. J. Agric. Food Chem., 58(1): 533-536.
[38]S. Fuchs, G. Winter, C. Coester, 2010. Ultrasonic resonator technology as a new quality control method evaluating gelatine nanoparticles. J. Microcapsul, 27(3): 242-252.
[39]P. K. Choi, Y. Naito, K. Takagi, 1983. New ultrasonic resonator using optical diffraction for liquids. J. Acoust. Soc. Am., 74(6): 1801-1804.
[40]Y. Naito, P. K. Choi, K. Takagi, 1985. A plano-concave resonator for ultrasonic absorption  measurements. J. Phys. E: Sci. Instrum., 18(1): 13-16.
[41]U. Kaatze, B. Wehrmann, 1988. High-Q plano-concave resonator with and without Straubel quartz for ultrasonic absorption measurements of liquids. IEEE Trans. Instrum. Meas., 37(4): 648-651.
[42]F. Eggers, U. Kaatze, K. H. Richmann, et al, 1994. New plano-concave cells for absorption and velocity measurements in liquids below 1 MHz. Meas. Sci. Tec.,  5(9): 1131-1138.
[43]F. Eggers, T. Funck, K. H. Richmann, 1976. High Q ultrasonic liquid resonators with concave transducers. Rev. Sci. Instrum., 47(3): 361-367.
[44]V. S. Kononenko, 1987. Precision method for measurements of the ultrasonic absorption coefficient in liquids at frequencies of 0.1~20 MHz. Sov. Phys. Acoust., 33(4): 401-404.
[45]R. Behrends, F. Eggers, U. Kaatze, T. et al, 1996. Ultrasonic spectrometry of liquids below 1 MHz. Biconcave resonator with adjustable radius of curvature. Ultrasonics, 34(1): 59-67.
[46]R. Polacek, U. Kaatze, 2003. A high-Q easy-to-handle biconcave resonator for acoustic spectrometry of liquids. Meas. Sci. Technol., 14(7): 1068-1074.
[47]A. P. Sarvazyan, E. E. Sel’kov, T. V. Chalikyan, 1988. Constant-path acoustic interferometer with transition layers for precision measurements in small liquid volumes. Sov. Phys. Acoust., 34(6): 631-634.

 


[Full Text View]