此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Olfactory Decoding Method Using Neural Spike Signals

Kyung-jin YOU, Hyun-chool SHIN

 

Dept. of Electronic Engineering, Soongsil University, Seoul 156- 743, Korea

 

Abstract-This paper presents a novel method for inferring the  odor based on neural activities observed from rats' main olfactory bulbs. Multi -channel extra-cellular single unit recordings are done by micro-wire electr odes (Tungsten, 50 μm, 32 channels) implanted in the mitral/tufted cell  layers of the main olfactory bulb of anesthetized rats to obtain neural respons es to various odors. Neural response as a key feature is measured by subtraction  of neural firing rate before stimulus from after. For odor inference, the autho rs develop a decoding method based on the ML estimation. The results  show that the average decoding accuracy is about 100.0%, 96.0%, and 80.0% wi th three rats, respectively. This work has profound implications for a novel bra in-machine interface system for odor inference.

 

Key words-olfactory; odorants; inference; neural decodi ng; neural signal processing; neural activity

 

Manuscript Number: 1674-8042(2010)01-0081-05

 

dio: 10.3969/j.issn.1674-8042.2010.01.17

 

References

 

[1] Peter Dayan, L. F. Abbott, 1999. Theoretical Neuroscience; Computati onal and Mathematical Modelling of Neural Systems Cambridge. MIT Press, Massachu setts.

[2] A. Pouget, S. A. Fisher, T. J. Sejnowski, 1983, Egocentric spatial r epresentation in early vision. J. Cog. Neu.,150-161.

[3] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, et al, 2002. Brain-m achine interface: instant neural control of a movement signal. Nature 416:141-142.

[4] W. Wu, M. J. Black, Y. Gao, et al, 2002. Neural decoding of cursor m otion using a Kalman Filter, Advances in Neural Information Processing Systems 1 4. The MIT Press.

[5] A. Pouget, K. Zhang, S. Denerve, P. E. Latham, 1998. Statistically e fficient estimation using population coding. Neural Computation, 10: 373-410.

[6] J. Wessberg, C. Stambaugh, J. Kralik, et al, 2000. Real-time predic tion of hand trajectory by ensembles of cortical neurons in primates.  Nature, 408: 361-365.

[7] L. Paninski, M. R. Fellows, N. G. Hatsopoulos, et al, 2004. Spatiote mporal tuning of motor cortical neurons for hand position and velocity. J. Neurophysiol, 91: 515-532.

[8] A. P. Georgopoulos, A. B. Schwartz, R. E. Kettner, 1986. Neural popu lation coding of movement direction. Science, 233:416-419.

[9] S. Deneve, P. E. Latham, A. Pouget, 1999. Reading population codes:  a neural implementation of ideal observers. Nature Neurosci,  2(8): 740-745.

[10] H.C.Shin, V. Aggarwal, S. Acharya, M. H. Schieber, N. V. Thakor, 20 10. Neural decoding of finger movements using skellam-based maximum-likelihood  decoding, IEEE Trans. Biomed. Eng., 57(3): 754-760.

[11] M. Jazayeri, J. A. Movshon, 2006. Optimal representation of sensory  information by neural populations, Nature Neurosci, 9(5): 69 0-696.

[12] L. Buck, R. Axel, 1991. A novel multigene family may encode odorant  receptors: a molecular basis for odor recognition. Cell, 65:  175-187.

[13]  M. Leon, B. A. Johnson, 2003. Olfactory coding in the mammalian ol factory bulb. Brain Res. Rev., 42: 23-32.

[14]  L. B. Buck, 1996. Information coding in the vertebrate olfactory s ystem. Annual Review of Neurosci, 19: 517-544.

[15] D. Y. Lin, S. D. Shea, L. C. Katz, 2006. Representation of natural  stimuli in the rodent main olfactory bulb. Neuron, 50: 937- 949.

[16] R.Tabor, E.Yaksi, J.Weislogel, R. W. Friedrich, 2004. Processing of  odor mixtures in the zebrafish olfactory bulb. J.Neurosci., 24(29): 6611-6620.

[17] M. Meredith, 1986. Patterned response to odor in mammalian olfactor y bulb: the influence of intensity. J. Neurophysiol, 56: 572 -597.

[18] S. Nagayama , Y. K. Takahashi, Y. Yoshihara, K. Mori, 2004. Mitral  and tufted cells differ in the decoding manner of odor maps in the rat olfactory  bulb. J. Neu.,  91: 2532-2540.

[19] A. L. Catherine, M. K. Leslie, 2007. Chemical factors determine olf actory system beta oscillations in waking rats. J. Neurophysiol.,  98: 394-404.

[20] C.H.Vanderwolf, E.M.Zibrowski, 2001. Pyriform cortex β-waves:  odor-specific sensitization following repeated olfactory stimulation. Brain Res., 892: 301-308.

[21] V.S.Kodogiannis, J.N.Lygouras, A.Tarczynski, H.S.Chowdrey, 2008. Ar tificial odor discrimination system using electronic nose and neural networks fo r the identification of urinary tract infection. IEEE Trans. Inf. T echnol. Biomed., 12(6): 707-713.
 

 


[Full Text View]