Hui-juan ZHOU(周会娟), Zhou MENG(孟洲), Yi LIAO(廖毅)
College of Optoelectronic Science and Engineering, National Unive rsity of Defense Technology, Changsha 410073, China
Abstract-The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the Li NbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the imp edance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtai ned, which is verified by experimental results. We provide a method to choose th e appropriate modulation depth to optimize the desired sideband through proper t ransmission bias for the system based on the frequency-shift characteristic of the EOIM.
Key Words: LiNbO3 waveguide electro-optic intensity modula tor; modulation depth; frequency shift; distributed Brilouin optical fiber sensi ng
Manuscript Number: 1674-8042(2010)02-0125-04
dio: 10.3969/j.issn.1674-8042.2010.02.06
References
[1]M. Song, B. Zhao, X. Zhang, 2005. Optical coherent detection Brillou in distributed optical fiber sensor based on orthogonal polarization diversity r eception. Chin. Opt. Lett, 3: 271.
[2]S. Foaleng-Mafang, J. C. Beugnot, L. Thévenaz, 2009. Optimized Con figuration for High Resolution Distributed Sensing Using Brillouin Echoes. Proc. SPIE 7503, 75032C.
[3]A. Zornoza, D. Olier, M. Sagues, et al, 2009. Distortion-free Brill ouin Distributed Sensor Using RF Shaping of Pump Pulses. Proc. SPIE 7503, 75036D .
[4]J. Kondo, K. Aoki, Y. Iwata, et al, 2005. 76-GHz Millimeter-wave G eneration Using MZ LiNbO3 Modulator with Drive Voltage of 7 Vp-p and 19 GHz S ignal Input. Microwave Photonics.
[5]A. Loayssa, C. Lim, A. Nirmalathas, et al, 2003. Design and performa nce of the bidirectional optical single-sideband modulator. J. Lightw ave Technol, 21: 1071.
[6]D. Xiang, L. Liu, G. Chen, et al, 2006. Optical waveguide phase mod ulation technology for generating multi-wavelength optical source. Op to-Electronic Engineering, 33: 73.
[7]M. Niklès, L. Thévenaz, P. A. Robert, 1996. Simple distributed fi ber sensor based on Brillouin gain spectrum analysis. Opt. Lett., 21: 758.
[8]H. Zhou, Z. Meng, Y. Liao, 2009. Study of frequency shift characteri stics based on LiNbO3 waveguide electro-optic intensity modulator. Chin. J. Lasers, 36: 901.
[9]Z. Meng, H. Zhou, Y. Liao, et al, 2008. Measurement of Frequency Shi ft Characteristic Based on LiNbO3 Waveguide Electro-optic Intensity Modulator . Proceeding of 2008 1st Asia-Pacific Optical Fiber Sensors Conference.
[10]Y. Liao, H. Zhou, Z. Meng, 2009. Modulation efficiency of a LiNbO 3 waveguide electro-optic intensity modulator operating at high microwave frequ ency. Opt. Lett., 34: 1822.
[11]K. Yoshida, Y. Kanda, S. Kohjiro, 1999. A traveling-wave-type LiN bO3 optical modulator with superconducting electrodes. IEEE Transact ions on Microwave Theory and Techniques, 47: 1201.
[12]K. Yoshida, A. Minami, 1997. Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode. IEEE Tr ansactions on Applied Superconductivity, 7: 3508.
[13]A. Ahmed, Abou El-Fadl, A. I. Zarea, 2006. Modeling and Analysis o f LiNbO3 Optical Modulator with Superconducting Electrodes. IEEE CCECE/CCGEI.
[14]G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, et al, 1994. Pe rformance and modeling of broadband LiNbO3 traveling wave optical intensity mo dulators. J. Lightwave Technol., 12(10): 1807.
[15]K. Noguchi, O. Mitomi, H. Miyazawa, 1998. Millimeter-wave Ti:LiNbO 3 optical modulators. J. Lightwave Technol., 16(4): 615.
[full text view]