此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Colorfulness Enhancement Using Based on Image Classifier Chroma-histogram

Moon-cheol KIM1, Kyoung-won LIM2

 

1. Color Media Institute, Korea Polytechnic University, Siheung 4 29-793, Korea;2. Digital TV Lab. LG Electronics. Inc., Seoul University, Seoul 151-742,   Korea

 

Abstract-The paper proposes a colorfulness enhancement of pict orial images using based on based image classifiey chroma histogram. This approa ch firstly estimates strength of colorfulness of images and their types. With su ch determined information, the algorithm automatically adjusts image colorfulnes s for a better natural image look. With the help of an additional detection of s kin colors and a pixel chroma adaptive local processing, the algorithm produces  more natural image look. The algorithm performance had been tested with an image  quality judgment experiment of 20 persons. The experimental result indicates a  better image preference.

 

Key words-colorfulness enhancement; image classifica tion; chroma histogram

 

Manuscript Number: 1674-8042(2010)02-0112-04

 

dio: 10.3969/j.issn.1674-8042.2010.02.03

 


References

 

[1]R. Eschbach, B. W. Kolpltzik, 1995. Image-Dependent Color Saturatio n Correction in a Natural  Scene Pictorial Image. U.S. Patent. 5,450,217.

[2]T. J. W. M. Janssen, 1999. Computational Image Quality, Center for U ser-System Interaction. Technical University of Eindhoven, Netherland.

[3]N. Sergej, Yendrikhovskij, 1999. Color Reproduction and the Naturaln ess Constraint, Center for User-System Interaction. Technical University of Ein dhoven, Netherland.

[4]M. D. Fairchild, 1997. Color Appearance Models. Addison-Wesley.
 
[5]P. G. Engeldrum, 2000. Psychometric Scaling: A Toolkit for Imaging S ystems Development. Imcotek Press, Winchester, MA.

[6]S. Fernandez, M.D. Fairchild, 2002. Observer preferences and cultura l differences in color reproduction of scenic images. IS&T/SID 10th Color Imagin g Conference, Scottsdale, p. 66-72.

[7]P. G. Herzog, H. Buering, 2000. Optimizing Gamut Mapping: Lightness  and Hue Adjustments. Journal of Imagimg Science and Techn., 4 4(4): 480-485.
 
[8]J. Morovichi, CIE Technical Report (CIE 156:2003) for Gamut Mapping.

[9]M. Stoering, H. J. Anderson, E. Granum, 2001. Physic based modeling  of human skin colour under mixed illuminants. Robotics, and Autonomous  Systems, 35(3-4): 131-142.

[10]M. Stoering, H. J. Anderson, E. Granum, 1999. Skin Color Detection  under Changing Lighting Conditions. 7th International Symposium on Intelligent R obotic Systems, Coimra, Portugl, p. 187-195.
 
[11]Moon-cheol Kim, Jae-hwan Oh, 2002. Human Favorite Skin Color Enha ncement. IEEK. p. 5-8.
 
[12]International Telecommunication Union. Recommendation ITU-R BT. 70 9-4, Signal Parameter Values for the 1125/60/2:1 System and the 1250/50/2:1 Sys tem.

[13]ITU-R BT.500-11, Methodology for the subjective assessment of the  quality of television pictures.
 

 

[full text view]