此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Control of Nonlinear Systems with Output Tracking Error Constraints

Khac Duc Do1, Dang Binh Nguyen2, Anh Duc Nguyen3

 

1. School of Mechanical Engineering, University of Western Australia, WA 6009, Australia; 2. Rectoral Office Thainguyen University of Technology Thainguyen, Vietnam; 3. Department of Electrical Engineering, Thainguyen University of Technology Thainguyen, Vietnam

 


Abstract-A constructive method is presented to design control lers that force the output of nonlinear systems in a strict feedback form to tra ck a bounded and sufficient smooth reference trajectory asymptotically. Under  suitable condition with the initial output tracking error, the proposed controll ers guarantee the output tracking error within a symmetric or an asymmetric pre -specified limit range, and boundedness of all signals of the closed loop syste m. A transformation is introduced to take care of the output tracking error cons traint. Smooth and/or p-times differentiable step functions are proposed an d incorporated in the output tracking error transformation to overcome difficult ies due to the asymmetric limit range on the output tracking error. As a result,  there are no switchings in the proposed controllers despite of the asymmetric l imit range.

 

 Key words-nonlinear system; output constraint; backstep ping; Lyapunov method

 


Manuscript Number: 1674-8042(2010)03-0217-07

 


dio: 10.3969/j.issn.1674-8042.2010.03.04

 

 

References

 

[1]M.Krstic, I.Kanellakopoulos, P.Kokotovic, 1995. Nonlinear and Adapti ve Control Design. Wiley, New York.

[2]H.Khalil, 2002. Nonlinear Systems. Prentice Hall.

[3]R.Marino, P.Tomei, 1995. Nonlinear Adaptive Design: Geometric, Adapt ive, and Aobust. Prentice-Hall, London.

[4]R.D.Smith, W.F.Weldon. Nonlinear control of a rigid rotor magneti c bearing system: Modeling and simulation with full state feedback. IE EE Transaction on Magnetics, 31(2): 973-980.

[5]K.P.Tee, S.S.Ge, F.E.H.Tay, 2009. Adaptive control of electrostatic  microactuators with bidirectional drive. IEEE Transactions on Control  Systems Technology, 17(2): 340-352.

[6]B.D.O.Anderson,M.Deistler,L.Farina,L.Benvenuti,1996.Nonnegative  realization of a linear system with nonnegative impulse response. IEE E Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2): 134-142.

[7]S.F.Phillips, D. E.Seborg, 1998. Conditions that guarantee no oversh oot for linear systems. International Journal of Control, 47( 4): 1043-1059.

[8]M.E.-K.R.Longchamp, O.D.Crisalle, 1993. Influence of zero locati ons on the number of step-response extrema. Automatica, 29:  1571-1574.

[9]S.Darbha, S.P.Bhattacharrya, 2003. On the synthesis of controller s for a nonovershooting step response. IEEE Transactions on Automatic  Control, 48(5): 797-799.

[10]M.T.Bement, S.Jayasuriya, 2004. Construction of a set of nonover shooting tracking controllers. Journal of Dynamic Systems, Measurement  and Control, 126(3): 558-567.

[11]M.T.Bement, S.Jayasuriya, 2004. Use of state feedback to achieve  a nonovershooting step response for a class of nonminimum phase systems. Journal of Dynamic Systems, Measurement and Control, 126(3): 657-6 60.

[12]M.Krstic, M.Bement, 2006. Nonovershooting control of strict-fee dback nonlinear systems. IEEE Transactions on Automatic Control, 51(12): 1938-1943.

[13]Z.H.Li, M.Krstic, 1997. Maximizing regions of attraction via bac kstepping and clfs with singularities. Systems and Control Letters, 30: 195-207.

[14]K.P.Tee, S.S.Ge, F.E.H.Tay, 2009. Barrier lyapunov functions fo r the control of output-constrained nonlinear systems. Automatica, 45(4): 918-927.

[15]K.B.Ngo, R.Mahony, Z.P.Jiang, 2005. Integrator backstepping using b arrier functions for systems with multiple state constraints. Proceedings of the  44th IEEE Conference on Decision and Control, p.8306-8312.

[16]K.D.Do, 2007. Bounded controllers for formation stabilization of mo bile agents with limited sensing ranges. IEEE Transactions on Automati c Control, 52(3): 569-576.

[17]K.D.Do, 2008. Formation tracking control of unicycle-type mobile r obots with limited sensing ranges. IEEE Transactions on Control System s Technology, 16(3): 527-538.

[18]J.B.Pomet, L.Praly, 1992. Adaptive nonlinear regulation: Estimat ion from the Lyapunov equation. IEEE Transaction on Automatic Control, 37(6): 729-740.

[19]D.V.Widder, 1989. Advanced calculus. Dover, Second ed., New York.
 

 

[full text view]