Chen-yang XUE(薛晨阳), Hui-juan WANG(王慧娟), Yong-feng LIANG(梁永峰),Rong CHEN(陈容), Jun LIU(刘俊)
National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
Abstract-Anisotropic metallic Nanoparticles (NPs) have unique optical properties, such as Surface Enhanced Raman Scattering (SERS)spectrosco py. In this paper, star-shaped and sphere gold NPs were prepared by seed-media ted growth and Frence methods respectively. The reaction process and the effect of reagent in seed-mediated growth of gold nanostar particles were systematical ly described. After fabricating NPs the authors test their Raman enhancement usi ng Crystal Violet (CV) molecules apart. The experimental results indicated that star-shaped Au NPs had stronger Raman enhancement spectrum than that of sphere Au NPs.
Key words-gold nanoparticles; seed-mediated growth method; SERS
Manuscript Number: 1674-8042(2010)03-0208-04
dio: 10.3969/j.issn.1674-8042.2010.03.02
Reference
[1]Clemens Burda, Xiao-bo Chen, Radha Narayanan, Mostafa A. El-Sayed, 2005. Chemistry and properties of nanocrystals of different shapes. C hem. ReV, 105: 1025-1102.
[2]S. Nie, S. R. Emory, 1997. Probing single molecules and single nanop articles by surface-enhanced Raman scattering. Science, 275(5303): 1102-11 06.
[3]P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenh off, E. W. Kaler, 2000. Self-assembly of Resorcinarene-stabilized Gold Nanopa rticles: Influence of the Macrocyclic Headgroup. Am. Chem. Soc, 122: 9554.
[4]M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzn, 200 8. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate s tructures in the reactions of aqueous HAuCl4 with sulfide and citrate ions. Chem. Soc. ReV. 37: 1783-1791.
[5]S. M. Nie, S. R. Emory, 1997. Single-molecule and single-nanoparti cle SERS: from fundamental mechanisms to biomedical applications. Scie nce, 275: 1102.
[6]J. Jiang, K. Bosnick, M. Maillard, L. Brus, 2003. Single molecule Ra man spectroscopy at the junctions of large Ag nanocrystals. Phys. Chem . B, 107: 9964.
[7]P. S. Kumar, I. Pastoriza-Santoz, B. Rodriguez-Gonzalez, F. Javier Garcia de Abajo, L. M. Liz-Marzan, 2008. Spatial Nonlocality in the Optical Re sponse of Metal Nanoparticles. Nanotechnology, 19: 1.
[8]J. E. Martin, J. P. Wilcoxon, J. Odinek, P. Provencio, 2000. Contro l of the interparticle spacing in gold nanoparticle superlattices. Phy s. Chem. B, 104: 9475.
[9]Chen, H. M. Liu, R. S. Asakura, K. Jang, L. Y. Lee, J. F, 2007. Cont rolling the Length and Shape of Gold Nanorods. Phys. Chem. C, 111: 18550.
[10]Hao-ming Chen, Ru-shi Liu, Din-ping Tsai, 2009. A Versatile Rout e to the Controlled Synthesis of Gold Nanostructures. Crystal Growth & Design, 9(5): 2079-2087.
[11]T. K. Sau, C. J. Murphy, 2004. Room temperature, high-yield synthe sis of multiple shapes of gold nanoparticles in aqueous solution. Lang muir, 20: 6414.
[12]D. Cialla, H. Uwe, H. Schneidewind, J. Popp, 2008. Microfabricated SERS-arrays with sharp-edged metallic nanostructures. Chem Phys Chem , 9: 758.
[13]M. Liu, P. Guyot-Sionnest, 2005. Ultrafast resonant optical scatte ring from single gold nanorods: Large nonlinearities and plasmon saturation. J. Phys. Chem. B, 109: 22192.
[14]T. K. Sau, C. Murphy, 2004. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 20: 6414.
[15]A. Kudelski, 2005. Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecu les adsorb preferentially on highly SERS-active sites? Chem. Phys. Le tt, 414: 271.
[full text view]