此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Performance of Spread Spectrum Watermarking in Autoregressive Host Model Under Additive White Gaussian Noise Channel

Bin YAN(颜斌), Xiao-ming WANG(王小明), Yin-jing GUO(郭银景)

 

School of Information and Electrical Engineering, Shandong University of Science and Technology. Qingdao 266510, China

 

Abstract-A large class of multimedia and biomedical signals c an be modeled as Autoregressive (AR) random processes. Performance of watermarki ng embedding algorithms utilizing this host model is still left unexplored. The  authors investigate the decoding performance of Spread Spectrum (SS) embedding a lgorithm in the standard Additive White Gaussian Noise (AWGN) channel with the h ost signal being modeled as AR process. The SS embedding algorithm also use line ar interference cancelation in the subspace spanned by watermark pattern. They s tudy the influence of design parameters on the decoding performance. The analyti c result is verified by Monte Carlo simulation on synthesized AR process. The  r esult may be helpful to design watermarking system for speech, biomedical and im age signals.

 

Key words-spread spectrum watermarking; interference ca ncelation; AR process; performance analysis

 

Manuscript Number: 1674-8042(2010)03-0271-05

 

dio: 10.3969/j.issn.1674-8042.2010.03.15

 

References

 

[1]M. Barni, F. Bartolini, 2004. Watermarking Systems Engineering: Enab ling Digital Assets Security and Other Applications. Marcel Dekker Inc..
 [2]I. J. Cox, M. L. Miller, J. A. Bloom, 2002. Digital Watermarking, Sa n Francisco. Morgan Kaufmann Publishers, USA.

[3]Q. Cheng, J. Sorensen, 2001. Spread spectrum signaling for speech wa termarking. IEEE International Conference on Acoustics Speech and Signal Process ing, p. 1337-1340.

[4]A. Gurijala, J. R. Deller, M. S. S. Jr., J. H. L. Hansen, 2002. Spee ch Waterm arking Through Parametric Modeling. Proceedings of Interna-tional Conference on  Spoken Language Processing (ICSLP).
 
[5]D. S. Sanei, J. A. Chambers, 2007. EEG Signal Processing. Wiley-Int erscience.

[6]A. K. Jain, 1998. Fundamentals of Digital Image Processing. Prentice  Hall.

[7]X. M. Wang, B. Yan, 2009. Spread Spectrum Speech Watermarking Based  on Linear Interference Cancelation. (preprint).

[8]J. K. Su, B. Girod, 2002. Power-spectrum condition for energy-effi cient watermarking. IEEE Transactions on Multimedia, 4(4): 55 1-560.

[9]H. S. Malvar, D. A. F. Florencio, 2003. Improved spread spectrum: a  ne w modulation technique for robust watermarking. IEEE transactions on s ignal processing, 51: 898-905.

[10]F. Perez-Gonzalez, F. Balado, J. H. Martin, 2003. Performance anal ysis of existing and new methods for data hiding with known-host information in  additive channels. IEEE Transactions on Signal Processing, 5 1(4): 960-980.

[11]T.M.Cover, J.A.Thomas, 1991. Elements of Information Theory. Wiley -Interscience.

[12]S.Kay, 1998. Fundamentals of Statistical Signal Processing: Detecti on Theory. Prentice Hall.

[13]R.M.Gray, L.D.Davisson, 2005. An Introduction to Statistical Signal  Processing. Cambridge University Press.
 

 

[full text view]