Yong-chao CAO(曹永超), Yu-xia LI(李玉霞)
College of Information & Electrical Engineering, Shandong Univers ity of Science and Technology, Qingdao 266510, China
Abstract-This paper investigates the synchronization an d circuit implementation of a new hyperchaotic Lorenz system. This system is gen erated by controlling a generalized Lorenz system to hyperchaotic by introducing a linear state feedback controller to its second equation. Global synchronizati on of the new hyperchaotic systems can be achieved by unidirectionally linear co upled approach, which is illustrated by both numerical simulations and electroni c circuit experiments.
Key words-hyperchaotic; Lorenz system; synchronization; circuit design
Manuscript Number: 1674-8042(2010)04-0372-04
dio: 10.3969/j.issn.1674-8042.2010.04.16
References
[1]L.M.Pecora,T.L.Carroll,1990.Synchronization in chaotic systems.Phys.Rev.Lett.,64(8): 821-824.
[2]G.Chen,X.Dong,1998.From chaos to Order:Methodologies, Perspec tives and Application.Word Scientific,Singapore.
[3]G.Grassi,S.Mascolo,1999.A System theory approach for designing crypt osystems Based on hyperchaos.IEEE Trans.on Circuits and Systems-I,46(9): 1135-1138.
[4]V.S.Udaltsov,J.P.Goedgebuer,L.Larger,et al,2003.Communicating w ith hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted infor mation. Optics and Spectroscopy, 95(1): 114-118.
[5]E.M.Shahverdiev,R.A.Nuriev,R.H.Hashimov,et al,2004.Adaptive time-de lay hyperchaos synchroni-zation in laser diodes subject to optical feedback(s). arXiv:nlin.CD/0404053,29.
[6]C.K.Duan, S.S.Yang, 1997. Synchronizing hyperchaos with a scalar signal by parameter controlling. Physics Letters A, 229: 151 -155.
[7]C. Li, X. Liao, 2004. Complete and lag synchronization of hyperchao tic systems using small impulses. Chaos, Solitons & Fractals, 22(4): 857-867.
[8]M.Itoh, L.Chua, 2002. Reconstruction and synchronization of hype rchaotic circuits via one state variable. Int. J. Bifur. Chaos, 12(10): 2069-2085.
[9]M.Brucoli, D.Cafagna, L.Caminieo, et al, 1999. Design of a hyperchao tic cryptosystem based on identical and genedized synchronization. Int . J. Bifur. Chaos, 10(9): 2027-2037.
[10]G.P.Jiang, K.S.Tang, G.Chen, 2003. A simple global synchronization criterion for coupled chaotic systems. Chaos, Solitons & Fractals, 15: 925-935.
[full text view]