此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Suboptimal State Feedback H2/H∞ Controller Des ign with Spectrum Constraint for Discrete-time Stochastic Systems

Ting HOU(侯婷), Wei-hai ZHANG(张维海), Hong-ji MA(马宏基)

 

College of Information and Electrical Engineering, Shandong Unive rsity of Science and Technology, Qingdao 266510, China

 

Abstract-With the aid of the spectrum technique, a new concept  named α-stabilizability (0≤α≤1) is introduced and its sufficient a nd necessary conditions are also proposed. Especially, it is identical with the  asymptotically mean square stabilizability when α=1. As an application, the  suboptimal state feedback H2/H∞ controller that  satisfies the additio nal spectrum constraint via solving a convex optimization problem is delt with.

 

Key words-spectrum technique; asymptotically mean squar e stabilizability; α-stabilizability; H2/H∞ controller design

 

Manuscript Number: 1674-8042(2011)01-0067-05

 

dio: 10.3969/j.issn.1674-8042.2011.01.17

 

References

 

[1]M. Chilali, P. Gahinet, 1996. H∞ design with pole placement c onstraints: An LMI approach. IEEE Trans. Automat. Contr.,   41: 358-367.

[2]M. Chilali, P. Gahinet, P. Apkarian, 1999. Robust pole placement in  LMI regions. IEEE Trans. Automat. Contr., 44: 2257-2269.

[3]S. Gutman, E. I. Jury, 1981. A general theory for matrix root-clust ering in subregions of the complex plane. IEEE Trans. Automat. Contr., 26: 853-863.

[4]A. G. Mazko, 1980. The Lyapunov matrix equation for a certain class  of region bounded by algebraic curves. Soviet Automatic Control, 42: 12-17.

[5]X. Mao, 1997. Stochastic Differential Equations and Their Applicatio ns, Chichester. Horwood U.K..

[6]R. Z. Has’minskii, 1980. Stochastic Stability of Differential Equat ions. Sijtjoff and Noordhoff. Alphen.

[7]W. Zhang, L. Xie, 2009. Interval stability and stabilization of line ar stochastic systems. IEEE Trans. Automat. Contr.,  54: 810 -815.

[8]W. Zhang, J. Feng, B. S. Chen, Z. Cheng, 2005. On Spectral Assignmen t and Detectability of Linear Stochastic Systems.  Proc. 2005 American Control C onference. Portland, OR, USA, p. 386-387.

[9]W. Zhang, H. Zhang, B. S. Chen, 2008.  Generalized Lyapunov equatio n approach to state-dependent stochastic stabilization/detectability criterion.  IEEE Trans. Automat. Contr., 53: 1630-1642.

[10]W. Zhang, B. S. Chen, 2004. On stabilizability and exact observabil ity of stochastic systems with their applications. Automatica ,  40: 87-94.

[11]W. Zhang, Y. Huang, L. Xie, 2008. Infinite horizon stochastic H 2=H∞ control for discrete-time systems with state and disturbance dependen t noise. Automatica, 44: 2306-2316.

[12]B. S. Chen, W. Zhang, 2004. Stochastic H2=H∞ control with  statedependent noise. IEEE Trans. Automat. Contr., 49: 45-57 .

[13]P. P. Khargonekar, M. A. Rotea, 1991. Mixed H2=H∞ control:  a convex optimization approach. IEEE Trans. Automat. Contr.,  36: 824-837.

[14]X. Chen, K. Zhou, 2001. Multiobjective H2=H∞ control desig n. SIAM J. Control Optim., 40: 628-660.

[15]J. L. Willems, J. C. Willems, 1976. Feedback stabilizability for st ochastic systems with state and control dependent noise. Automatica, 12: 277-283.

[16]A. El Bouhtouri, D. Hinrichsen, A. J. Prichard, 1999. H∞-ty pe control for discrete-time stochastic systems. Int. J. Robust Nonli near Control, 9: 923-948.

[17]S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, 1994. Linear Matr ix Inequalities in System and Control Theory. SIAM. Philadelphia, PA.

[18]P. Gahinet, A. Nemirovski, A. J. Laub, M. Chilali, 1995. LMI Contro l Toolbox. Math Works. Natick, MA.
 

[full text view]