GUO Hai-yan1,REN Jun1,FENG Gang2, CAO Duan-lin1
(1. School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China;2. SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China)
Abstract: The distribution of Fe and the adsorption of NH3 in H-[Fe]MOR (mordenite) were investigated using dispersion corrected density functional theory (DFT-D2). Based on the results, it can be found that the most favorable site for the distribution of Fe is T1O6, followed by T2O5, T4O2 and T3O1, and energy differences for Fe in different T sites are less than 0.09 eV, indicating that Fe atoms may distribute in all kinds of T sites in MOR. In addition, the adsorption energies for NH3 at each crystallographic position of H-[Fe]MOR were also determined. Finally, it can be concluded that the Brnsted acid site at T2O5 is stronger than the other acid sites, and the adsorption of NH3 on Brnsted acid sites is more stable than on Lewis acid sites.
Key words: mordenite (MOR); distribution of Fe; adsorption of NH3; dispersion corrected density functional theory (DFT-D2) calculations
CLD number: O647.3 Document code: A
Article ID: 1674-8042(2014)01-0080-08 doi: 10.3969/j.issn.1674-8042.2014.01.017
References
[1] LU Bao-wang, Oumi Y, Sano T. Convenient synthesis of large mordenite crystals. Journal of Crystal Growth, 2006, 291(2): 521-526.
[2] Beck J S, Vartuli J C. Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Current Opinion in Solid State and Materials Science, 1996, 1(1): 76-87.
[3] Campa M, Indovina V. Cobalt-exchanged mordenites: preparation, characterization and catalytic activity for the abatement of NO with CH4 in the presence of excess O2. Journal of Porous Materials, 2007, 14: 251-261.
[4] Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5 catalysts. The Journal of Physical Chemistry B, 1999, 103: 5963-5976.
[5] Benco L, Bucko T, Hafner J, et al. Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H2 and CH4. The Journal of Physical Chemistry B, 2005, 109: 20361-20369.
[6] Chu C T W, Chang C D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. The Journal of Physical Chemistry, 1985, 89(9): 1569-1571.
[7] Strodel P, Neyman K M, Kninger H, et al. Acidic properties of [Al], [Ga] and [Fe] isomorphously substituted zeolites. Density functional model cluster study of the complexes with a probe CO molecule. Chemical Physics Letters, 1995, 240(5/6): 547-552.
[8] Kustov A L, Egeblad K, Kustova M, et al. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia. Topics of Catalysis, 2007, 45(1/2/3/4): 159-163.
[9] Li G, Pidko E A, van Santen R A, et al. Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5: A comprehensive periodic DFT study. Journal of Catalysis, 2011, 284(2): 194-206.
[10] Alayon E M, Nachtegaal M, Ranocchiari M, et al. Catalytic conversion of methane to methanol over Cu-mordenite. Chemical Communications, 2012, 48(3): 404-406.
[11] Busca G. Acid catalysts in industrial hydrocarbon chemistry. Chemical Reviews, 2007, 107: 5366-5410.
[12] REN Li-min, GUO Qiang, ZHANG Hai-yan, et al. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. Journal of Materials Chemistry, 2012, 22: 6564-6567.
[13] Bajpai P K, Rao M S, Gokhale K. Synthesis of mordenite type zeolites. Industrial & Engineering Chemistry Product Research and Development, 1978, 17(3): 223-227.
[14] Bajpai P K. Synthesis of mordenite type zeolite. Zeolites, 1986, 6(1): 2-8.
[15] Alberti A. Location of Brnsted sites in mordenite. Zeolites, 1997, 19(5/6): 411-415.
[16] Alberti A, Davoli P, Vezzalini G. The crystal structure refinement of a natural mordenite. Zeitschrift für Kristallographie-Crystalline Materials, 1986, 175(3/4): 249-256.
[17] LIU Bei, García-Pérez E, Dubbeldam D, et al. Understanding aluminum location and non-framework ions effects on alkane adsorption in aluminosilicates: a molecular simulation study. The Journal of Physical Chemistry C, 2007, 111: 10419-10426.
[18] Ban S, Vlugt T J H. Adsorption and diffusion of alkanes in Na-MOR: modeling the effect of the aluminum distribution. Journal of Chemical Theory and Computation, 2009, 5(10): 2858-2865.
[19] Ramachandran C E, Williams B A, van Bokhoven J A, et al. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis, 2005, 233(1): 100-108.
[20] Demuth T, Hafner J, Benco L, et al. Structural and acidic properties of mordenite. an ab initio density-functional study. The Journal of Physical Chemistry B, 2000, 104: 4593-4607.
[21] YUAN Shu-ping, WANG Jing-guo, LI Yong-wang, et al. Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe. Journal of Molecular Structure: Theochem, 2004, 674(1): 267-274.
[22] Oumi Y, Kanai T, Lu B, et al. Structural and physico-chemical properties of high-silica mordenite. Microporous and Mesoporous Materials, 2007, 101(1/2): 127-133.
[23] Lamberov A A, Kuznetsov A M, Shapnik M S, et al. Quantum-chemical investigation of the formation of Lewis acid centers of high-siliceous zeolites. Journal of Molecular Catalysis A: Chemical, 2000, 158(1): 481-486.
[24] FENG Gang, LIAN Ying-ying, YANG De-qin, et al. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12: a computational study. Canadian Journal of Chemistry, 2013, 91(10): 925-934.
[25] Elanany M, Vercauteren D P, Koyama M, et al. H-MOR: density functional investigation for the relative strength of Brnsted acid sites and dynamics simulation of NH3 protonation deprotonation. Journal of Molecular Catalysis A: Chemical, 2006, 243(1/2): 1-7.
[26] HUO Hua, PENG Lu-ming, GAN Zhe-hong, et al. Solid-state MAS NMR studies of bronsted acid sites in zeolite H-mordenite. Journal of the American Chemical Society, 2012, 134(23): 9708-9720.
[27] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15-50.
[28] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.
[29] Kerber T, Sierka M, Sauer J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. Journal of Computational Chemistry, 2008, 29(13): 2088-2097.
[30] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
[31] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77: 3865-3868.
[32] Blchl P, Frst C, Schimpl J. Projector augmented wave method:ab initio molecular dynamics with full wave functions. Bulletin of Materials Science, 2003, 26(1): 33-41.
[33] Blchl P E. Projector augmented-wave method. Physical Review B, 1994, 50: 17953-17979.
[34] Rollmann G, Rohrbach A, Entel P, et al. First-principles calculation of the structure and magnetic phases of hematite. Physical Review B, 2004, 69: 165107.
[35] FENG Gang, HUO Chun-fang, LI Yong-wang, et al. Structures and energies of iron promoted γ-Al2O3 surface: A computational study. Chemical Physics Letters, 2011, 510(4): 224-227.
[36] Ortmann F, Bechstedt F, Schmidt W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Physical Review B, 2006, 73: 205101.
[37] Blumenfeld A L, Coster D, Fripiat J J. Broensted acid sites and surface structure in zeolites: a high-resolution 29Si NMR REDOR study. The Journal of Physical Chemistry, 1995, 99(41): 15181-15191.
Fe 在丝光沸石骨架中的取代位置及 NH3 吸附的理论研究
郭海燕1, 任君1, 冯刚2, 曹端林1
(1. 中北大学 化工与环境学院,山西 太原 030051; 2. 中国石化上海石油化工研究院,上海 201208)
摘要:采用色散校正密度泛函方法(DFT-D2)研究了 Fe 同晶取代进入丝光沸石骨架中的可能位置及其对 NH3 分子的吸附。 结果表明, Fe 优先取代位是 T1O6 位, 然后依次是 T2O5, T4O2 和 T3O1位, 且能量差小于 0.09 eV, 说明Fe可能分布在四种非等价晶体T位, 而且电荷平衡质子的位置影响Fe取代位的稳定性。 本文还采用DFT和DFT-D2方法计算了NH3分子在每一个Fe取代的T位的吸附能。 通过比较发现, DFT 低估了 NH3 的吸附能约 0.53 eV, 这表明 DFT-D2 方法对于 NH3 吸附是很有必要的, 且结果与文献相符, T2O5 位的 Brnsted 酸性最强, NH3 在 Brnsted 酸位的吸附比在 Lewis 酸位的吸附更稳定。
关键词:丝光沸石; Fe同晶取代; NH3 吸附; DFT-D2 计算
引用格式:GUO Hai-yan, REN Jun, FENG Gang, et al. Distribution of Fe and adsorption of NH3 in mordenite: a computational study. Journal of Measurement Science and Instrumentation, 2014, 5(1): 80-87. [doi: 10.3969/j.issn.1674-8042.2014.01.017]
[full text view]