此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

First-principles calculation of electronic properties of N- and X(X=S,Se,Te)-codoped anatase TiO2

 

LI Chang-sheng, REN Jun,  GUO Hai-yan, PENG Xing, WANG Jian-long, CAO Duan-lin

 

(School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China)

 

Abstract: The impact of N- and X(X=S, Se, Te)-codoping on electronic properties of anatase TiO2 has been systematically investigated using density functional theory (DFT). The optimized geometry shows that there is large lattice expansion for the codoped anatase TiO2 due to large atomic radius of the codoped atom. The calculated substitution energies indicate that incorporation of X(X=S,Se,Te) into N-doped bulk TiO2 can not promote synergistic effect on N after substituting for Ti, whereas it is better after substituting for O. According to the total density of states (DOS) and corresponding partial DOS (PDOS), it can be seen that substituting X(X=S,Se,Te) for O, N 2p orbital is strongly hybridized with impurity states (S 3p,Se 4p,Te 5p). After substituting X(X=S,Se,Te) for Ti, conduction band is mainly dominated by Ti 3d orbit and S 3p (Se 4p or Te 5p )-N 2p-Ti 3d hybridized states are formed. Based on  Bader analysis, it can be indicated that the electron transfer is from N to X(X=S,Se,Te) if substituting X(X=S,Se,Te) for O, but it is opposite if substitute X(X=S,Se,Te) for Ti.

 

Key words: anatase TiO2; electronic properties; substitution energy; codoping

 

CLD number: O614.41 Document code: A

 

Article ID: 1674-8042(2014)01-0088-08  doi: 10.3969/j.issn.1674-8042.2014.01.018

 

References

 


[1] Linsebiger A L, Lu G Q, Yates J T.  Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Review, 1995, 95(3): 735-758.
[2] Fujishima  A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 1972, 238(5385): 37-38.
[3] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
[4] Yamashita Y, Ichiashi M, Taeuchi S, et al. Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation, 1999, 6(3): 451-452.
[5] WANG Yan-qin, CHENG Hu-min, ZHANG Li, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. Journal of Molecular Catalysis A-Chemical, 2000, 151(1/2): 205-216.
[6] Long R, English N J. Synergistic effects of Bi/S codoping on visible    light-activated anatase TiO2 photocatalysts from first principles. Journal of Physical Chemistry, 2009, 113(19): 8373-8377.
[7] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
[8] Umebayashi T, Yamaki Y, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002, 81(3): 454-456.
[9] CHEN Dai-mei, YANG Dong, WANG Qun, et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial and Engineering Chemistry Research, 2006, 45(12): 4110-4116.
[10] Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. Journal of Physical Chemistry B, 2003, 107(24): 5709-5716.
[11] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders. Journal of Physical Chemistry B, 2003, 107(23): 5483-5486.
[12] Jenks W S, Howk R S, Rockafellow E M, et al. Selenium-modified TiO2 and its impact on photocatalysis. Langmuir, 2010, 26(24): 19052-19059.
[13] Curkan Y Y, Kasapbasi E, Cinar Z. Enhanced solar photocatalytic activity of TiO2 by selenium (IV) ion-doping- Characterization and DFT modeling of the surface. Chemical Engineering Journal, 2013, 214(1): 34.
[14] GAO Hong-tao, LIU Yuan-yuan, DING Cui-hong, et al. Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities. International Journal of Minerals Metallurgy and Materials, 2011, 18(5): 606-615.
[15] Behpour M, Atouf V. Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation. Applied Surface Science, 2012, 258(17): 6595-6601.
[16] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47(1): 558-561.
[17] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186.
[18] Perdew J P, Burk K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865-3868.
[19] Perdew J P, WANG Yue. Accurate and simple analytic representation of the electron-gas correlation energy. Physical of Review B, 1992, 45(23): 13244-13249.
[20] Davidson E R. Methods in computational molecular physics. Edited by Diercksen G H F, Wilson S D. Reidel Publishing Company, Dordrecht, Holland, 1982.
[21] Wilson S. NATO advanced study institute, series C. Plenum, Newyork, 1983, 113: 95-114.
[22] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical of Review B, 1976, 13(12): 5188-5192.
[23] Dudarev S L, Botton C A, Savarsov S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Physical of Review B, 1998, 57(3): 1505-1509.
[24] Loschen C, Carrasco J, Neyman K, et al. First-principles LDA+U and GGA+U study of cerium oxides: dependence on the effective U parameter. Physical of Review B, 2007, 75(3): 035115-035123.
[25] Burdett J K, Hughbandks T, Miller G J, et al. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 1987, 109(12): 3639-3646.
[26] Kamisaka H, Suenaga T, Nakamura H, et al. DFT-based theoretical calculations of Nb-and W-doped anatase TiO2: complex formation between W dopants and oxygen vacancies. Jourcal of Physical Chemistry C, 2010, 114(29): 12777-12783.
[27] Henkelman G,  Arnaldsson  A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354-360.
[28] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 2007, 28(5): 899-908.

 


N和硫属元素X(X=S, Se, Te)共掺杂锐钛矿TiO2电子性质的第一性原理计算

 

李昌盛, 任君, 郭海燕, 彭兴, 王建龙, 曹端林

 

(中北大学 化工与环境学院,山西 太原 030051)

 

摘要:本文运用密度泛函理论系统地研究了 N 和 X(X=S, Se, Te)共掺杂锐钛矿 TiO2 时电子特性所受的影响。 优化后的结构表明, 在锐钛矿TiO2共掺杂时, 由于掺杂原子有较大的原子半径而引起了大的晶格膨胀。 从计算的替换能结果看, 当X(X=S,Se,Te)掺杂到有N原子存在的TiO2时, 若替换Ti原子, 则不能很好地促进与N的协同作用, 若替换O原子, 则相反。 从总态密度图和分态密度图来看, 替换O原子后的N 2p轨道和其他杂质带 S 3p, Se 4p, Te 5p杂化在一起; 同时替换Ti原子后, 导带主要由Ti 3d轨道所占据, 从而形成了S 3p (Se 4p or Te 5p )-N 2p-Ti 3d杂化态。 从Bader电荷的结果可知, 替换O原子, 电子转移是由N到X(X=S,Se,Te), 而替换Ti原子后, 电子转移是由X(X=S,Se,Te)到N。

 

关键词:锐钛矿TiO2;电子性质;替换能;共掺杂

 

引用格式:LI Chang-sheng, REN Jun,  GUO Hai-yan, et al. First-principles calculation of electronic properties of N- and X(X=S,Se,Te)-codoped anatase TiO2. Journal of Measurement Science and Instrumentation, 2014, 5(1): 88-95. [doi: 10.3969/j.issn.1674-8042.2014.01.018]

 

[full text view]