XU Hong-yan1, XUE Chen-yang2, ZHANG Qiang2, WANG Hui-juan2, YUAN Yan-ling2, SUN Dong2,3, XIONG Ji-jun2
(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;2. National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China;3. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China)
Abstract: This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties. Spherical gold nanoparticles with different sizes are synthesized via reduction method. Using seed-mediated solution growth method, gold nanoparticles with shuttle, star and stick shapes can be obtained. The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM). The characterization results illustrate the growth process of the gold nanoparticles with different morphologies. Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties. The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
Key words: star-shaped gold nanoparticles; spherical gold nanoparticles; surface-enhanced Raman scattering (SERS); seed-mediated solution growth method
CLD number: TG146.3+1 Document code: A
Article ID: 1674-8042(2014)01-0096-07 doi: 10.3969/j.issn.1674-8042.2014.01.019
References
[1] Ranjan M. Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12: 4540-4545.
[2] WANG Jian-ting, Moore J, Laulhe S, et al. Fluorophore gold nanoparticle complex for sensitive optical biosensing and imaging. Nanotechnology, 2012, 23: 095501-13.
[3] DONG Jiang-zhou, ZHANG Xiao-liang, CAO Ya-an, et al. Shape dependence of nonlinear optical behaviors of gold nanoparticles. Materials Letters, 2011, 65: 2665-2668.
[4] ZHANG Qiang, XUE Chen-yang, YUAN Yan-ling, et al. Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors. Sensors, 2012, 12: 2729-2741.
[5] Burda C, CHEN Xiao-bo, Narayanan R, et al. Chemistry and properties of nanocrystrals of different shapes. Chemical Reviews, 2005, 105(4): 1025-1102.
[6] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106.
[7] Tessier P M, Veler O D, Kalambur A T, et al. Self-assemly of resorciarene-stabilied gold nanoparticles: influence of the macrocyclic headgroup. The Journal of American Chemical Society, 2000, 122: 9554.
[8] CUI Da-fu, LI Xiang-ming, CAI Hao-yuan, et al. Development of surface plasmon resonance (SPR) biochemical analysis instrument. Modern Scientific Instruraoms, 2001, 6: 34-38.
[9] LI Ying, ZHONG Jin-gang, ZHANG Yong-lin. Fingerprint image aequisition based on surface plasmon resonance imaging. Chinese Journal of Lasers, 2006, 33: 1143-1147.
[10] ZENG Jie, LIANG Da-kai, CAO Zhen-xin. Study on a novel optical fiber tenlperature sensor based on surface piasnlon resonance. Chinese Journal of Lasers, 2004, 31: 838-842.
[11] Steiner G. Surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry, 2004, 379(3): 328-331.
[12] Masanori A, Takeshi S T. Surface plasma resonance and magneto-optical enhancement in composites containing multi core-shell structured nanoparticles. Physical Review B, 2004, 70: 235103.
[13] HU Xing-hua. Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens. Applied Physies Letters, 2004, 85(9): 1520-1522.
[14] ZHU Jian, ZHAO Jun-wu, WANG Yong-chang. Influence of surface charge density on the plasmon resonance modes in gold nanoellipsoid. Physica B: Condensed Matter, 2004, 353(3/4): 331-335.
[15] SUN YU-gang, Mayers B, XIA You-nan. Transformation of silver nanospheres into nanobelts and triangular nanopiates through a thermal process. Nano Letters, 2003, 3(5): 675-679.
[16] ZHANG Hao-ran, MAN Shi-qing. Surface-enhanced Raman scattering activities of crystal violet based on Au/SiO2. Chinese Journal of Analytical Chemistry, 2011, 39: 821-826.
[17] Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanning electronmicroscopy. Journal of Histochemistry & Cytochemistry, 1977, 25(4): 295-305.
[18] Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemical Materials, 2001, 13: 2313-2322.
[19] SUN Mu, XU Ning, Cao Y W, et al. Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behaviorjournal of materials research. Journal of Materials Research, 2000, 15(4): 927-933.
[20] Hodak J H, Henglein A, Hartland G V. Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes. The Journal of Physical Chemistry, 2000, 143: 9954-9965.
[21] Alvarez M M, Khoury J T, Schaaff T G, et al. Optical absorption spectra of nanocrystal gold molecules. The Journal of Physical Chemistry, 1997, 101(19): 3706-3712.
不同形貌尺寸金纳米颗粒的制备及其光学性能研究
徐宏妍1, 薛晨阳2, 张强2, 王慧娟2, 袁艳玲2, 孙东2,3, 熊继军2
(1. 中北大学 材料科学与工程学院, 山西 太原 030051; 2. 中北大学 电子测试技术重点实验室,山西 太原 030051; 3. 香港城市大学 机械与生物医学工程系, 香港)
摘要:本文制备了不同形貌的金纳米颗粒, 并对其形貌对光学性能的影响进行了研究。 本文用还原法制备了不同粒径的金纳米颗粒, 采用晶种生长法成功地制备出了星形、 梭形和棒状的金纳米颗粒。 颗粒的形貌和大小并采用投射电子显微镜(TEM)进行了表征, 结果说明, 本文成功制备出了不同形貌大小的金纳米颗粒。 UV-Vis 光谱和拉曼光谱仪对制备的颗粒的表征测试说明, 不同形貌大小对颗粒有着不同的光学性能。 拉曼光谱的结果说明, 不同形貌大小的金纳米颗粒可以用作不同浓度分子的探针, 对物质进行检测。
关键词:星形金纳米颗粒; 球星金纳米颗粒; 表面增强拉曼散射(SERS); 晶种生长法(晶种法)
引用格式:XU Hong-yan, XUE Chen-yang, ZHANG Qiang, et al. Synthesis and optical properties research of gold nanoparticles with different morphologies. Journal of Measurement Science and Instrumentation, 2014, 5(1): 96-102. [doi: 10.3969/j.issn.1674-8042.2014.01.019]
[full text view]