Salah H R Ali1,M G El-Sherbiny2
(1. Engineering and Surface Metrology Department, National Institute for Standards (NIS), Giza 12211-136, Egypt;2. Mechanical Design and Production Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)
Abstract: Form error measurement is a critical exercise in providing measures for the quality control in the precision manufacturing industry. Coordinate measuring machine (CMM) is one of the automated systems used in the accurate and precise dimensional measurements and geometrical form. This paper aims to study the effect of dynamic original unforeseeable errors at different undulations per revolution (UPR) of standard artifact measurement using selected two types of CMM touch-triggering stylus. Stylus-type and stylus-speed parameters were adopted and utilized throughout the course of experiment. The results are analyzed using fast Fourier transformation to obtain foreseeable geometrical errors due to CMM machine structure and stylus scanning speeds. The results of experiment successfully indicate that the number of UPR plays an important role in determining the CMM accuracy level of the roundness measurement result. Some specific error equations for stylus system and machine structure responses have been postulated and analysed to empirically predict the accuracy of PRISMO-Bridge-CMM-type at National Institute for Standards (NIS) in egypt.
Key words: coordinate metrology; undulation per revolution (UPR) analysis; cooridinate measuring machine (CMM); stylus speed error
CLD number: TG806 Document code: A
Article ID: 1674-8042(2014)01-0001-09 doi: 10.3969/j.issn.1674-8042.2014.01.001
References
[1] Ali S H R, Mohamad H H, Bedewy M K. Identifying cylinder liner wear using precise coordinate measurements. International Journal of Precision Engineering and Manufacturing, 2009, 10 (5): 19-25.
[2] Ali S H R, Bedewy M K, Zahwi S Z. Dimensional inspection of overhauled automotive water-cooled diesel engines. In: Proceeding of the International Conference on Production Engineering, Design, and Automatic Control (PEDAC’09), Alexandria, Egypt, 2009.
[3] Khaled K M, Aggag G, Abuelezz A E, et al. The influence of misalignment on the uncertainty of vertical torque calibration machine. Journal of Metrology Society of India, 2011, 26(2): 153-157.
[4] Zeiss Calypso Navigator. CMM operation instructions and training manual. Revision 4.0. Carl Zeiss Co., Germany, 2004.
[5] FENG Chang-xue Jack, Saal A L, Salsbury J G, et al. Design and analysis of experiments in CMM measurement uncertainty study. Precision Engineering, 2007, 31(2): 94-101.
[6] Goa W. Chapter 5: scanning multi-sensor system, precision nanometrology in Springer Series in Advanced Manufacturing, Springer-Verlag London Limited, 2010: 143-173.
[7] CAO Lin-xiang. The measuring accuracy of the multistep method in the error separation technique. Journal of Physics E: Scientific Instruments, 1989, 22(11): 903-906.
[8] Whitehouse D J. Some theoretical aspects of error separation techniques in surface metrology. Journal of Physics E: Scientific Instruments, 1976, 9(7): 531-536.
[9] GAO Wei, Kiyono S. On-machine profile measurement of machined surface using the combined three-point method. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 1997, 40(2): 253-259.
[10] Smith G T. Chapter 4: Roundness and cylindricity in industrial metrology: surfaces and roundness. Springer-Verlag London, 2002: 135-184.
[11] Haitjema H, Bosse H, Frennberg M, et al. International comparison of roundness profiles with nanometric accuracy. Metrologia, 1996, 33: 67-73.
[12] Muralikrishnan B, Raja J. Computational surface and roundness metrology. Springer, London, 2009.
[13] Butler C. Investigation into the performance of probes on coordinate measuring machines. Industrial Metrology, 1991, 2: 59-70.
[14] Ali S H R. Two dimensional model of cmm probing system. Journal of Automation, Mobile Robotics and Intelligent Systems, 2010, 4(2): 3-7.
[15] Ali S H R. Probing system in CMM. In: Proceedings of the 10th International Scientific Conference on Coordinate Measuring Technique, Bielsko-Biala, Poland, 2012.
[16] Wozniak A, Dobosz M. Factors influencing probing accuracy of a coordinate measuring machine. IEEE Transactions on Instrumentation and Measurement, 2005, 54: 2540-2548.
[17] Ali S H R. Probing system characteristics in coordinate metrology. Journal of Measurement Science Review, 2010, 10(4): 120-129.
[18] ISO 10360-2, Coordinate metrology, performance assessment of coordinate measuring machines, CH-1211, International Organization for Standardization. Geneva, Switzerland, 2001.
[19] ISO 10360-6, Coordinate metrology, international standard: geometrical product specifications (gps)-acceptance and reverification tests for coordinate measuring machines (CMM)-part 6: CMMs used for measuring size. International Organization for Standardization, Geneva, Switzerland, (2001).
[20] Schwenke H, Knapp W, Haitjema H, et al. Geometric error measurement and compensation of machines: an update. CIRP Annals-Manufacturing Technology, 2008, 57(2): 660-675.
[21] Yague J A, Albajez J A, Velazquez J, et al. A new out-of-machine calibration technique for passive contact analog probes. Measurement, 2009, 42: 346-357.
基于坐标测量机的几何误差测量分析
Salah H R Ali1,M G El-Sherbiny2
(1. Engineering and Surface Metrology Department, National Institute for Standards (NIS), Giza 12211-136, Egypt; 2. Mechanical Design and Production Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)
摘要:测量形状误差是精密制造业质量控制的关键部分。坐标测量机(CMM)是自动化精确测量维度尺寸和几何形状的机器。本文选用两种类型的坐标测量机触发探针进行标准工件测量,旨在研究不同的每转波数(UPR)时不可预见的动态固有误差的影响。整个实验过程使用探针类型和探针速度参数,采用快速傅立叶变换分析实验结果,得到受CMM机械结构和探针扫描速度影响而可预见的几何误差。实验结果表明,UPR的数量在进行圆形测量时对CMM准确度水平起非常重要的作用。本文对探针系统和坐标测量机结构响应的具体误差公式也进行了假设与分析,以经验数据来预测PRISMO-Bridge-CMM在NIS中的准确度。
关键词:坐标测量; 每转波数(UPR)分析; 坐标测量机和探针的速度误差
引用格式:Salah H R Ali, M GEl-Sherbiny. Error separation in CMM coordinate metrology. Journal of Measurement Science and Instrumentation, 2014, 5(1): 1-9. [doi: 10.3969/j.issn.1674-8042.2014.01.001]
[full text view]