此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Application of RLS adaptive filtering in signal de-noising

 

CHENG Xue-zhen, XU Jing-dong, WEI A-ying, PANG Ming-xiang

 

(College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

 

Abstract: In view of the problem that noises are prone to be mixed in the signals, an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced. The principle of adaptive filtering and the process flow of RLS algorithm are described. Through example simulation, simulation figures of the adaptive de-noising system are obtained. By analysis and comparison, it can be proved that RLS adaptive filtering is capable of eliminating the noises and obtaining useful signals in a relatively good manner. Therefore, the validity of this method and the rationality of this system are demonstrated.

 

Key words: de-noising; adaptive filtering; recursive least squares (RLS) algorithm

 

CLD number: TN911.7 Document code: A

 

Article ID: 1674-8042(2014)01-0032-05  doi: 10.3969/j.issn.1674-8042.2014.01.007

 

References

 

[1] REN Xiao-ya, SONG Ai-min. Comparison of adaptive filtering algorithms used in interference cancellation system. Communications Technology, 2007, 40(12): 48.
[2] LIU Shi-jin, ZHAOG Yu-feng, CHEN Wen-lüe, et al. Comparison of adaptive filtering algorithms in noise cancellation application: a simulation study.  Journal of System Simulation, 2006, 18(5): 1178-1179.
[3] WANG Lu-bin, ZHAI Jing-chun, XIONG Hua. Adaptive filter algorithm research and Matlab realization. Modern Electronics Technique, 2008, 31(3): 174-175.
[4] Ogunfunmi T, Paul T. Analysis of convergence of a frequency-domain LMS adaptive filter implemented as a multi-stage adaptive filter. Journal of Signal Processing Systems, 2009,56(2/3): 341-350.
[5] SONG Hui, LIU Jia. Research on adaptive speech enhancement algorithm based on  differential microqhone array and its implementation with DSP. Acta Automatica Sinica, 2009, 35(9): 1240-1241.
[6] WU Qi-hui, WANG Jin-long, SHEN Liang, et al. Robust RLS algorithm for adaptive arrays. Acta Electronica Sinica, 2002, 30(6): 893-894.
[7] Antunovi M, Cummer S A. Adaptive filter for event-based signal extraction. Automatika: Journal for Control, Measurement, Electronics, Computing and Communications, 2004, 45(3): 130-132.
[8] GAO Li-jun, Parhi K K, MA Jun. Relaxed annihilation-reordering look-ahead QRD-RLS adaptive filters. Journal of VLSI Signal Processing,  2003, 35(2): 119-120.
[9] Lotfizad M, Yazdi H S. Modified clipped LMS algorithm. EURASIP Journal on Advances in Signal Processing, 2005(8): 1229-1230.
[10] SONG Li-ye, WANG Jing-sheng, PENG Ji-sheng. Algorithm research of adaptive filter and DSP simulation realization. Modern Electronic Technique, 2009, 32(5): 112-113.
[11] GAO Ying, XIE Sheng-li. An adaptive filtering algorithm based on recursion of generalized inverse matrix.Acta Electronica Sinica, 2002, 30(7): 1032-1033.
[12] Chang D C, Chiu H C. A stabilized multichannel fast RLS algorithm for adaptive transmultiplexer receivers. Circuits, Systems and Signal Processing, 2009, 28(6): 845-859.
[13] JIANG Xiao-hua, JIN Ji, Emedi A. Adaptive fundamental component detection approach to power harmonic compensation based on the RLS  algorithm. Chinese Journal  of  Scientific  Instrument, 2006, 27(1): 1-3.
[14] MIAO Hao, Deuflhard P, SUN Zeng-qi, et al. Model-free uncalibrated visual servoing using recursive least squares. Journal of Computers, 2008, 3(11): 42-43.
[15] XU Pei. Research on a high performance control system based on TMS320F2812. Aeronautical Computing Technique, 2007, 37(5): 86-87.

 


RLS 自适应滤波在信号消噪中的应用

 

程学珍, 徐景东, 卫阿盈, 逄明祥

 

(山东科学大学 信息与电气工程学院, 山东 青岛 266590)

 

摘要:针对信号中混有噪声的问题, 介绍了一种基于 RLS 算法的自适应信号消噪系统, 并阐述了自适应滤波的原理以及 RLS 算法的步骤与流程。 通过实例仿真, 得到了基于 RLS 算法的自适应消噪系统仿真图。 经过对比分析可知, RLS 自适应滤波能较好地消除噪声, 获得有用信号, 从而验证了该方法的有效性和系统的合理性。

 

关键词:消噪; 自适应滤波; 递推最小二乘法(RLS)

 

引用格式:CHENG Xue-zhen, XU Jing-dong, WEI A-ying, et al. Application of RLS adaptive filtering in signal de-noising. Journal of Measurement Science and Instrumentation, 2014, 5(1): 32-36. [doi: 10.3969/j.issn.1674-8042.2014.01.007]

[full text view]