ZHAI Ya-yu1, PAN Jin-xiao1, LIU Bin1, CHEN Ping1,2
(1. Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China;2. Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China)
Abstract: Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image processing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, corner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly interface based on VC++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accuracy which can meet the industrial needs.
Key words: size detection; real-time image processing and display; gain calibration; edge fitting
CLD number: TN911.73 Document code: A
Article ID: 1674-8042(2014)04-0040-06 doi: 10.3969/j.issn.1674-8042.2014.04.008
References
[1] Pratt W K. Digital image processing. 3rd edition. New York: Wiley Inter-Science, 1991.
[2] WANG Hai-hong, WANG Qi, LI Qi, et al. Real-time data processing display platform of imaging laser radar. In: Proceedings of SPIE 5640, Infrared Components and Their Applications, 2005: 544.
[3] Schowengerdt R A. Remote sensing: models and methods for image processing. 3rd edition. Beijing: Academic Press, 2007.
[4] Jain A K, Yu Z, Lakshmanan S. Object matching using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 267-278.
[5] Fried R, Einbeck J, Gather U. Weighted repeated median smoothing and filtering. Journal of the American Statistical Association, 2007, 102(480): 1300-1308.
[6] Ahn H K, Lee K S, Yu H, et al. VCO gain calibration technique for GSM/EDGE polar modulated transmitter. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, 2008: 83-86.
[7] Martínez M, Mittrapiyanuruk P, Kakand A C. On combining graph-partitioning with non-parametric clustering for image segmentation. Computer Vision and Image Understanding, 2004, 95(1): 72-85.
[8] Choong M Y, Liau CF, Mountstephens J, et al. Multistage image clustering and segmentation with normalised cuts. In: Proceedings of the 3rd International Conference on Intelligent Systems, Modelling and Simulation, 2012: 362-367.
[9] Barney-Smith E H. An analysis of binarization ground truthing. In: Proceeding of the 9th International Workshop on Document Analysis Systems, Boston, MA, USA, 2010: 27-33.
[10] Baba M, Ohtani K. A novel sub-pixel edge detection system for dimension measurement and object localization using an analogue-based approach. Journal of Optics A: Pure & Applied Optics, 2001, 3(4): 276-283.
[11] CHANG Zhi-xue, WANG Pei-chang, PANG Ling-bin, et al. A roof edge detection method based on parabola fitting for cross laser image. Opto-Electronic Engineering, 2009, 36: 93-97.
[12] ZHANG Lei, Bao P. Denoising by spatial correlation thresholding. IEEE Transactions on Circuts and Systems for Video Technology, 2003, 13(6): 535-538.
[13] Kao W C, Liu J J, Chuand M I. Integrating photometric calibration with adaptive image halftoning for electrophoretic displays. Journal of Display Technology, 2010, 6(12): 625-632.
[14] Lee S H, Lee J H, Kin M Y. Dual camera based wide-view imaging system and real-time image registration algorithm. In: Proceedings of the 11th International Conference on Control, Automation and Systems, KINTEX, Gyeonggido, Korea, 2011: 26-29.
基于VC++物体尺寸检测中的实时图像处理与显示
翟亚宇1, 潘晋孝1, 刘 宾1, 陈平1,2
(1. 中北大学 信息探测与处理山西省重点实验室, 山西 太原 030051;2. 中国科学院自动化研究所,中国科学院分子影像重点实验室, 北京 100190)
摘要:图像处理是尺寸检测算法的关键技术之一。 本文主要讨论动态图像的处理与显示, 完成运动物体的实时图像处理。 首先, 为使图像更接近实际物体, 对运动物体的图像进行中值滤波、 增益校正、 图像分割与二值化、 角点检测和边缘拟合处理, 同时将处理完成的图像实时显示出来, 便于图像分析、 理解和识别并减少计算量。 最后, 利用VC+ + 编制人机交互界面, 实现数字逻辑变换以及物体图像处理与实时显示。 实验证明, 本文提出的算法和软件的设计具有良好的实时性、 精确性, 能够满足工业需求。
关键词:尺寸检测; 实时图像处理与显示; 增益校正; 边缘拟合
引用格式:ZHAI Ya-yu, PAN Jin-xiao, LIU Bin, et al. Real-time image processing and display in object size detection based on VC++. Journal of Measurement Science and Instrumentation, 2014, 5(4): 40-45. [doi: 10.3969/j.issn.1674-8042.2014.04.008]
[full text view]