Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2
(1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)
Abstract: In present article a number of results are described in a systematic way concerning both signal and image processing problems with respect to atomic functions theory and Prouhet-Thue-Morse sequence.
Key words: atomic functions; Prouhet-Thue-Morse sequence; digital signal processing; image processing
CLD number: TN911.7Document code: A
Article ID: 1674-8042(2015)02-0128-14 doi: 10.3969/j.issn.1674-8042.2015.02.005
References
[1] Nguen H D. A new proof of the Prouhet-Tarry-Escott problem. 2014-11-22[2015-02-17]. http:∥arxiv.org/abs/1411.6168.
[2] Allouche J-P, Shallit J. Automatic sequences: theory, applications, generalizations. London: Cambridge University Press, 2003.
[3] Nguyen H D, Coxson G E. Doppler tolerance, complementary code sets, and the generalized thue-morse sequence, 2014-10-11[2015-02-17]. http:∥arxiv.org/abs/1406.2076.
[4] Hilberg W. Korrelationsermittlung durch stapeln von impulsen: German Patent 198 18 694 A 1, 1999.
[5] Cooklev T. Device and method for compensating or creating doppler effect using digital signal processing: US Patent 6633617 B1, 2003.
[6] Mangum J G. User’s manual for the NRAO 12 meter millimeter-wave telescope. Kitt Peak, Arizona, 2000.
[7] Korotkikh V, Korotkikh G, Bond D. On optimality condition of complex systems: computational evidence, 2005[2015-02-17]. http:∥arxiv.org/abs/cs/0504092.
[8] Rouan D. Ultra deep nulling interferometry using fractal interferometers. Comptes Rendus Physique, 2007, 8(3/4): 415-425.
[9] Chi Y, Pezeshki A, Calderbank R, et al.. Range sidelobe suppression in a desired Doppler interval. In: Proceedings of IEEE International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 2009: 8-13.
[10] Holten T, Flekk y E G, Singer B, et al. Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First break, 2009, 27(5): 89-93. http:∥www.petromarker.com/wp-content/uploads/2013/06/first-break-may-2009.pdf.
[11] Kravchenko V F, Rvachev V L. Boolean algebra, atomic fucntions, and wavelets in physcial applications. Fizmatlit, Moscow, 2006.
[12] Kravchenko V F. Application of atomic functions theory, WA-systems and R-functions in information technologies. In: Proceedings of International Scientific Seminar "Actual Problems of Mathematical Physics", Moscow State University, Moscow, 2014: 28-33.
[13] Kravchenko V F, Perez-Meana H M, Ponomaryov V I. Adaptive digital processing of multidimensional signals with applications, Fizmatlit, Moscow, 2008.
[14] Zelkin E G, Kravchenko V F, Gusevskii V I. Constructive methods of approximation in theory of antennas. Moscow: Sains-Press, 2005.
[15] Konovalov Y Y. Iterative algorithms for numerical solution of differential equations with linearly transformed argument. International Journal of Electromagnetic Waves and Electronic Systems, 2011, 16(9): 49-57.
[16] Hilberg W, Kravchenko V F, Kravchenko O V, et al. Atomic functions and generalized Thue-Morse sequence in digital signal and image processing. In: Proceedings of 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, 2013: 66-71.
[17] Konovalov Y Y, Kravchenko V F. Weight functions based on the convolutions of atomic functions. In: Proceedings of the International Conference on Days on Diffraction, 2013: 78-82.
[18] Kravchenko O, A continuous analog of the 1D Thue-Morse sequence, [2015-02-17]. http:∥demonstrations.wolfram.com/A Continuous Analog Of The 1 D Thue Morse Sequence/
[19] Kravchenko O. Polynomial atomic functions for Fourier analysis, 2014[2015-02-17]. http:∥demonstrations.wolfram.com/Polynomial Atomic Functions For Fourier Analysis/
[20] Kravchenko V F, Lutsenko V I, Lutsenko I V. Backscaterring by sea of centimeter and millimeter waves at small grazing angle. Journal of Measurement Science and Instrumentation, 2014, 5(2): 36-43.
[21] Kravchenko V F, Lutsenko V I, Lutsenko I V, et al. Description and analysis of non-stationary signals by nested semi-Markov processes. Journal of Measurement Science and Instrumentation, 2014, 5(3): 25-32.
[22] Volosyuk V K, Kravchenko V F, Kutuza B G, et al. Statistical theory of ultrawideband radiometric devices and systems. Physical Bases of Instrumentation., 2014, 3(3): 5-66.
[23] Kravchenko V F, Churikov D V. Kravchenko atomic transforms in digital signal processing. Journal of Measurement Science and Instrumentation, 2012, 3(3): 228-234.
[24] Kravchenko V F, Churikov D V. Kravchenko probability weight functions in problems of radar signals correlation processing. Journal of Measurement Science and Instrumentation, 2013, 4(3): 231-237.
[25] Volosyuk V K, Kravchenko V F, Pavlikov V V, et al. Statistical synthesis of radiometric imaging formation in scanning radiometers with signal weight processing by Kravchenko windows. Doklady Physics, 2014, 59(5): 219-222.
[26] Volosyuk V K, Gulyaev Y V, Kravchenko V F, et al. Modern methods for optimal spatio-temporal signal processing in active, passive, and combined active-passive radio-engineering systems (Review). Journal of Communications Technology and Electronics, 2014, 59(2): 97-118.
[27] Kravchenko V F, Kravchenko O V, Pustovoit V I, et al. Application of the families atomic functions, WA-systems and R-functions in modern problems of radiophysics. Part I. Journal of Communications Technology and Electronics, 2014, 59(10): 949-978.
[28] Kravchenko V F, Kravchenko O V, Lutsenko V I, et al. Restoration of environment information parameters with using of atomic and WA-systems of functions. Review. Part I. Application of the theory of semi-markov fields and finite functions for the description of non-stationary processes. Physical Bases of Instrumentation, 2014, 3(2): 3-18.
Prouhet-Thue-Morse序列和原子函数在物理和技术中的应用
Victor F Kravchenko1,2, Oleg V Kravchenko1,2,3, Yaroslav Y Konovalov2]
(1. Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation, Moscow 117342, Russia)
摘要:本文系统地阐述了信号与图像处理中与原子函数理论和Prouhet-Thue-Morse序列相关的大量研究成果。
关键词:原子函数; Prouhet-Thue-Morse序列; 数字信号处理; 图像处理
引用格式:Victor F Kravchenko, Oleg V Kravchenko, Yaroslav Y Konovalov. Prouhet-Thue-Morse sequence and atomic functions in applications of physics and techniques. Journal of Measurement Science and Instrumentation, 2015, 6(2): 128-141. [doi: 10.3969/j.issn.1674-8042.2015.02.005]
[full text view]