YUAN Ze-hui, LI Shi-zhong
(College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)
Abstract: X-ray image has been widely used in many fields such as medical diagnosis, industrial inspection, and so on. Unfortunately, due to the physical characteristics of X-ray and imaging system, distortion of the projected image will happen, which restrict the application of X-ray image, especially in high accuracy fields. Distortion correction can be performed using algorithms that can be classified as global or local according to the method used, both having specific advantages and disadvantages. In this paper, a new global method based on support vector regression (SVR) machine for distortion correction is proposed. In order to test the presented method, a calibration phantom is specially designed for this purpose. A comparison of the proposed method with the traditional global distortion correction techniques is performed. The experimental results show that the proposed correction method performs better than the traditional global one.
Key words: X-ray image; distortion correction; support vector regression machine
CLD number: TP391.41Document code: A
Article ID: 1674-8042(2015)03-0302-05 doi: 10.3969/j.issn.1674-8042.2015.03.018
References
[1] Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation does during intra-operative use of C-arm fluoroscopy. Spine, 2012, 37(14): 1240-1244.
[2] WANG Xiao-hui, NING Ruo-la. Accurate and efficient image intensifier distortion correction algorithm and its application in volume tomographic angiography. In: Proceedings of Medical Imaging 1997: Physics of Medical Imaging, Newport Beach, CA, USA ,1997, 3032(427): 427-440.
[3] YAN Shi-ju, WANG Cheng-tao, YE Ming. A method based on moving least squares for XRII image distortion correction. Medical Physics, 2007, 34(11): 4194-4206.
[4] Holdsworth D W, Pollmann S I, Nicolov H N, et al. Correction of XRII geometric distortion using a liquid-filled grid and image subtraction. Medical Physics, 2005, 32(1): 55-64.
[5] YAN Shi-ju, QIAN Li-wei. XRII image distortion correction for C-arm-based surgical navigation system. Journal of Biomedical Engineering, 2010, 27(3): 548-551.
[6] LI Yuan-jin, LUO Li-min, ZHANG Peng-cheng, et al. Distortion correction of XRII image based on calibration grid characteristic and biharmonic interpolation. Journal of Southeast University (Natural Science Edition), 2011, 41(6): 1213-1218.
[7] Cerveria P, Forlani C, Borghese N A, et al. Distortion correction for x-ray image intensifier: local unwarping polynomials and RBF neural networks. Medical Physics, 2002, 29(8): 1759-1771.
[8] Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1998.
[9] Deyong D, Bhowmik S, Magnago F. An effective power quality classifier using wavelet transform and support vector machine. Expert Systems with Application, 2015, 45(15/16): 6075-6081.
[10] CAO Jian-fang, CHEN Jun-jie, CHEN Li-chao. An improved image classification method basd on multi features using fuzzy support vector machine. BioTechnology, 2014, 10(11): 5543-5542.
[11] Avila F, Mora M, Oyarce M. A method to construct fruit maturity color scales based on support machines for regression: application to olives and grape seeds. Journal of Engineering, 2014, 162: 9-17.
[12] Waleed D, Sohel R, Habshah M. Non-sparse epsilon-insensitive support vector regression for outlier detection. Journal of Applied Statistics, 2015, 42(8): 1723-1739.
基于支持向量回归机的X射线图像畸变校正研究
袁泽慧, 李世中
(中北大学 机电工程学院, 山西 太原 030051)
摘要: X射线图像已经被广泛的应用于各个领域, 如医学诊断, 工业检测等。 然而, 由于x射线及其成像系统的物理特性, 得到的X图像存在严重畸变, 这极大限制了X射线在一些高精度场合的应用, 因此需对原始的x射线图像进行校正。 所谓图像畸变校正, 就是设法建立畸变图像特征点坐标与理想图像特征点坐标之间的映射模型, 即校正模型, 将畸变的点恢复到原来的位置。 目前常用的畸变校正方法主要分为两类: 全局校正法和局部校正法, 这两种方法都有各自的优缺点。 本文提出了利用支持向量回归机建立校正模型的一种全局校正方法, 并将其与全局多项式模型做比较, 通过比较两种模型的校正图像中特征点分布与理想分布的符合度, 检验所提出算法的效果。 实验结果表明, 提出的算法效果明显好于传统的多项式方法。
关键词: X-射线图像; 畸变校正; 支持向量回归机
引用格式:YUAN Ze-hui, LI Shi-zhong. X-ray image distortion correction based on SVR. Journal of Measurement Science and Instrumentation, 2015, 6(3): 302-306. [doi: 10.3969/j.issn.1674-8042.2015.03.018]
[full text view]