XU Yong-jie, WANG Zhi-jun
(College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)
Abstract: Nose deflection control is a new concept of fast response control model. The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead. Consequently, aerodynamic control force is generated. This control way has high control efficiency and very good application prospects in the ammunition system. Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment, changes the aerodynamic characteristics in the projectile flight process, produces the corresponding balance angle and sideslip angle resulting in motor overload, adjusts flight moving posture to control the ballistics, finally changes shooting range and improves firing accuracy. In order to study characteristics of self-adaptive control projectile, numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile. The aerodynamic characteristics at different nose delectation angles, different Mach numbers and different angles of attack are obtained and compared. The results show that the nose deflection control has great influence on the head of rocket projectile, and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface, which results in a larger lift. Finally, ballistics experiments are done for verification. The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.
Key words: rocket projectile; intelligent morphing technology; nose deflection; ballistics characteristics
CLD number: TJ415Document code: A
Article ID: 1674-8042(2015)03-0205-07doi: 10.3969/j.issn.1674-8042.2015.03.001
References
[1] YIN Jian-ping, WANG Zhi-jun. Ammunition theory. Beijing: Beijing Institute of Technology Press, 2014.
[2] ZHANG Bo, WANG Shu-shan, CAO Meng-yu, et al. Impacts of deflection nose on ballistic trajectory control law. Mathematical Problems in Engineering, 2014.
[3] GAO Ting-xin. Study of aerodynamic characteristics of migraine control. In: Proceedings of Aviation Aircraft Development and Aerodynamics Seminar, Hangzhou, 2006.
[4] ZHANG Tong, ZHAO Xiao-li. Analysis of trajectory correction projectile and its key technology.Cruise Missile, 2014, 24(5): 38-42.
[5] Landers M G, Hall L H, Auman L M, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 1.
[6] XIA Bin, ZHOU Liang. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34(3): 27-33.
[7] Vaughn, M E, Auman L M. Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 23-29.
[8] HAN Zi-peng. Exterior ballistics of projectile and rockets. Beijing: Beijing Institute of Technology Press, 2014.
[9] XU Ming-you. Advanced external ballistics. Beijing: Higher Education Press, 2003.
[10] YU Wen-jie. Study of aerodynamic characteristics for a fin-stabilized projectile with a deflectable nose control. Nanjing: Nanjing University of Science&Technology, 2010.
[11] WANG Fei, WU Guo-dong, WANG Zhi-jun. Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. Journal of North China Institute of Technology, 2005, 26(3): 177-179.
[12] WEIi Fang-hai, WANG Zhi-jun, YIN Jian-ping. Numerical calculation of aerodynamic characteristics of shell with an angle of warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 553-558.
[13] DONG Er-bao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Anhui: University of Science and Technology of China, 2010.
[14] XU Yu-xin, WANG Shu-shan. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores. Acta Materiae Compositae Sinica, 2012, 29(3): 72-78.
[15] XU Yu-xin, WANG Shu-shan. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011, 30(5): 192-195.
基于智能变形技术的火箭弹特性分析
徐永杰, 王志军
(中北大学 机电工程学院, 山西 太原 030051)
摘要:偏转头部控制是一种新概念快速响应的控制方式。 弹头部相对于弹轴进行局部偏转, 并且在弹头的迎风面和背风面形成压力差从而产生空气控制力, 在弹药系统里, 这是一个高效并具有良好应用前景的控制方式。 基于智能材料和结构的弹箭头部智能变形驱动机构可以使弹箭获得额外的控制力和控制力矩, 改变弹丸在飞行过程中的空气动力特性, 在弹箭飞行过程中会产生附加的平衡角、 侧滑角, 进而产生机动过载, 控制飞行姿态和飞行弹道, 并在最后时限提高弹丸的射击精确度。 为了研究自适应控制弹箭的特性, 利用流体力学软件对尾翼稳定的火箭弹进行了数值模拟。 获得不同头部偏角、 不同马赫数和不同攻角情况下的弹箭空气动力学特性。 结果表明, 偏转头部控制对弹箭的头部具有较大的影响, 并且引起流场的不对称性。 弹头部迎风面和背风面的压力差为弹箭提供较大的升力。 最后, 做弹道试验验证了仿真的研究结果。 研究结果可以为自适应弹箭的设计及优化提供理论基础, 并为智能弹药的研究提供新思路和新方法。
关键词:火箭弹; 智能变形技术; 头部偏转; 弹道特性
引用格式:XU Yong-jie, WANG Zhi-jun. Characteristics analysis of rocket projectile based on intelligent morphing technology. Journal of Measurement Science and Instrumentation, 2015, 6(3): 205-211. [doi: 10.3969/j.issn.1674-8042.2015.03.001]
[full text view]